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Preface

This book provides an overview on transport theories for readers from different
fields although the actual applications and especially the relativistic off-shell
transport theory are of particular interest for physicists working in the field of
relativistic strong-interaction physics such as relativistic or ultra-relativistic heavy-
ion collisions or the evolution of the early universe. Instead of giving hand-waving
arguments for transport models in various fields, the focus here is on a thorough
derivation of the transport equations and a careful analysis of the approximations
employed. In order to keep the arguments and extensions in line, a multitude of
Appendices is added that partly recall elements of elementary lectures on quantum
mechanics or present examples for specific models. As for basic knowledge, the
reader should be familiar with quantum mechanics and its principles as well as some
basic concepts of the quantum many-body physics and field theory. Furthermore,
the reader should not be afraid of sometimes lengthy equations and derivations
that are mandatory for a stringent mathematical derivation and allow to point out
relevant approximations. The detailed formulations allow for independent numerical
studies that provide a space-time ‘movie’ of nonequilibrium dynamics of weakly
and strongly interacting many-body systems. Exercises are incorporated throughout
the chapters and are expected to deepen an understanding of the material presented.

The contents of this work have been developed with my PhD students and
collaborators over a period of about 35 years and has led to some deeper insight
into the physics of strongly interacting systems in and out of equilibrium, especially
in comparison to experimental data from worldwide accelerator facilities. I hope the
reader will enjoy reading and find helpful sections for his or her own research.

Gießen, Germany Wolfgang Cassing
May 2021
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1Introduction

Nonequilibrium many-body theory or quantum-field theory has become a major
topic of research for transport processes in nuclear physics, in cosmological particle
physics as well as condensed matter physics. The multidisciplinary aspect arises
due to a common interest to understand the various relaxation phenomena of
quantum dissipative systems. Recent progress in cosmological observations has also
intensified the research on quantum fields out-of equilibrium. Important questions
in high-energy nuclear or particle physics at the highest energy densities are: (1)
how do nonequilibrium systems in extreme environments evolve, (2) how do they
eventually thermalize, (3) how phase transitions do occur in real time with possibly
nonequilibrium remnants, and (4) how do such systems evolve for unprecedented
short and nonadiabatic timescales?

The very early history of the universe provides important scenarios, where
nonequilibrium effects might have played an important role, like in the (post-)
inflationary epoque [1–5], for the understanding of baryogenesis and also for the
general phenomena of cosmological decoherence [6]. Referring to modern nuclear
physics the dynamics of heavy-ion collisions at various bombarding energies has
always been a major motivation for research on nonequilibrium quantum many-
body physics and relativistic quantum-field theories, since the initial state of a
collision resembles an extreme nonequilibrium situation, i.e. imping nuclei in
their ground states, while the final state might even exhibit a certain degree of
thermalization including a multitude of newly produced particles [7–9]. Indeed,
at the presently highest energy heavy-ion collider experiments at the Relativistic
Heavy-Ion Collider (RHIC) in Brookhaven or the Large Hadron Collider (LHC)
at CERN a variety of nonequilibrium phenomena and possible phase transitions
are expected or already have been seen. Presently it is evident that one observes a
transient deconfined state of matter denoted as quark-gluon plasma (QGP), which
shows up in the buildup of collective flow of hadrons due to a very large pressure
in the initial reaction phase [10]. These examples demonstrate that one needs an
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ab-initio understanding of the dynamics of out-of-equilibrium many-body systems
or quantum-field theory.

Especially the powerful method of the “Schwinger-Keldysh” or “closed-time-
path” (CTP) (nonequilibrium) real-time Green’s functions [11–15] has been shown
to provide a suitable basis for the formulation of the complex problems in the various
areas of nonequilibrium quantum many-body physics. Within this framework one
can derive valid approximations—depending, of course, on the problem under
consideration—by preserving overall consistency relations [16]. Originally, the
resulting causal Dyson-Schwinger equation of motion for the one-particle Green’s
functions (or two-point functions), i.e. the Kadanoff–Baym (KB) equations [17],
has served as the underlying scheme for deriving various transport phenomena and
generalized transport equations.

Furthermore, kinetic transport theory is a convenient tool to study many-body
nonequilibrium systems, nonrelativistic or relativistic. Kinetic equations, which do
play the central role in more or less all practical simulations, can be derived by
means of appropriate Kadanoff–Baym equations [17] within suitable approxima-
tions or from the density-matrix hierarchy [18]. Hence, a major impetus in the
past has been to derive semiclassical Boltzmann-like transport equations within the
standard quasiparticle approximation. Additionally, off-shell extensions by means
of a gradient expansion in the space-time inhomogenities - as already introduced
by Kadanoff and Baym—have been formulated for a relativistic electron-photon
plasma, for transport of electrons in a metal with external electrical field, for
transport of nucleons at intermediate heavy-ion reactions, for transport of particles
in φ4-theory, for transport of electrons in semiconductors, for transport of partons
or fields in high-energy heavy-ion reactions, or for a trapped Bose system described
by effective Hartree–Fock–Bogolyubov kinetic equations. We recall that on the
formal level of the Kadanoff–Baym equations the various forms assumed for the
selfenergy have to fulfill consistency relations in order to preserve symmetries of
the fundamental Lagrangian [17, 19, 20]. This allows also for a unified treatment of
stable and unstable (resonance) particles which are encountered especially in high-
energy heavy-ion reactions. For review articles on the Kadanoff–Baym equations in
the various areas of nonequilibrium quantum physics we refer the reader to Refs.
[21–29].

In nonequilibrium quantum-field theory typically the nonperturbative description
of (second-order) phase transitions has been in the foreground of interest by
means of mean-field (Hartree) descriptions, with applications for the evolution
of disoriented chiral condensates or the decay of the (oscillating) inflaton in
the early reheating era of the universe. “Effective” mean-field dissipation (and
decoherence)—solving the so-called backreaction problem—was incorporated by
particle production through order parameters explicitly varying in time. However,
it had been then realized that such a dissipation mechanism, i.e. transferring
collective energy from the time-dependent order parameter to particle degrees of
freedom, cannot lead to true dissipation and thermalization. Such a conclusion
has already been known for quite some time within the effective description of
heavy-ion collisions at low energy. Full time-dependent Hartree or Hartree–Fock
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descriptions were insufficient to describe the reactions with increasing collision
energy; additional Boltzmann-like collision terms had to be incorporated in order
to provide a more adequate description of the reaction dynamics [30, 31].

The incorporation of true collisions then has been formulated also for various
quantum-field theories. Here, a systematic 1/N expansion of the “two-particle
irreducible (2PI) effective action” is conventionally invoked serving as a nonper-
turbative expansion parameter, where N denotes the number of intrinsic degrees of
freedom (such as colors). Of course, only for large N this might be a controlled
expansion and 1/3 is definitely nonzero.1 In any case, the understanding and the
influence of dissipation with the chance for true thermalization—by incorporating
collisions—has become a major focus of investigations. The resulting equations
of motion always do resemble the Kadanoff–Baym equations; in their general
form (beyond the mean field or Hartree(–Fock) approximation) they do break time
invariance and thus lead to irreversibility. This macroscopic irreversibility arises
from the truncations of the full theory to obtain the selfenergy operators in a specific
limit. As an example we mention the truncation of the (exact) Martin–Schwinger
hierarchy in the derivation of the collisional operator or the truncation of the (exact)
BBGKY hierarchy 2 in terms of n-point functions and n-point correlation functions
[32].

Apart from the transport theories presented in this book there exists a multitude
of approaches that also are denoted as transport theories or models [33]. A simple
example is Classical Molecular Dynamics (CMD) solving nonrelativistic Hamilton
equations for the constituents on the basis of some appropriate two- or three-
body Hamiltonian. These models, however, are not suitable for nuclear systems
(of fermions) due to the lack of antisymmetry leading to a false equilibrium state.
Extensions of the molecular models—based on a variational principle for a system
of Slater determinants—have been developed and denoted by Antisymmetrized
Molecular Dynamics (AMD) [34] or Fermionic Molecular Dynamics (FMD) [35].
Due to the numerical complexity these approaches are limited to low energy
problems and light or medium nuclei. Further extensions include—on top of the
molecular equations of motion—an explicit Boltzmann-like collision term that
is attributed to the short-range part of the strong interaction. Additionally some
mechanisms have to be introduced to avoid binary collisions with final states that
are forbidden by the Pauli principle (Pauli blocking). These models are denoted
as Quantum Molecular Dynamics (QMD) models [36], which are realized on
different levels of sophistication. Their advantage is that they propagate many-body
correlations of the system which appear mandatory for cluster formation, however,
it is not yet clear if these correlations are identical to those of few-particle quantum
systems. Recently the QMD model has been extended also to the relativistic energy
regime [37]. In spite of frequent applications these approaches will not be presented
in this work. An overview is given in the actual review by Ono [38].

1 Here N = 3 refers to the number of colors.
2 According to the authors Bogolyubov, Born, Green, Kirkwood and Yvon.
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The layout of this book is as follows: We will start with the nonrelativistic many-
body problem for a system of fermions and introduce a suitable approximation
scheme for the BBGKY hierarchy in terms of correlation functions within the
Schrödinger picture. The lowest order truncation scheme will lead to equations of
motion which are equivalent to the Time-Dependent Hartree–Fock (TDHF). The
semiclassical limit of this truncation scheme will lead to the Vlasov equation for the
single-particle phase-space distribution. However, this limit is inappropriate for the
description of heavy-ion collisions in the energy range above 10–20 MeV/u3 as will
be demonstrated by explicit calculations in the framework of TDHF or the Vlasov
equation. Accordingly, we will consider the next order truncation scheme which
will be shown to incorporate two-body collisions in the Born approximation while
keeping track of Pauli blocking for the final states. This limit leads to the Vlasov–
Uehling–Uhlenbeck (VUU) or Boltzmann–Uehling–Uhlenbeck (BUU) equation,
however, with mean fields and cross sections based on the bare interaction which
is inappropriate for nuclear physics problems.

We will step on with the next order truncation scheme that includes a resumma-
tion of the strong interaction in terms of ladder diagrams (in the quasi-stationary
limit) and incorporates the matrix elements of the G-matrix for the mean fields as
well as for two-body scatterings. The semiclassical limit of this truncation scheme
leads again to a VUU or BUU transport equation but with nonperturbative mean
fields (or selfenergies) and scattering cross sections. Actual results for central
nucleus-nucleus collisions at 40 MeV/u will be reported and discussed in phase-
space representation. An extension to coupled-channel transport equations is given
briefly that incorporate either explicit spin and isospin degrees of freedom, excited
states of nucleons as well as pions or η-mesons which dominantly stem from the
hadronic decays of baryon resonances at these energies.

These nonrelativistic transport theories are Galilei but not Lorentz-invariant
such that an extension to higher bombarding energies has to employ a covariant
formulation. Whereas the kinematics are easily formulated in a covariant fashion
the mean fields (or selfenergies) have to obey explicit properties under Lorentz
transformations, i.e. to be of scalar, vector, or tensor type. A suitable extension of
the nonrelativistic VUU equations will be formulated in Chap. 3 on the basis of
Quantum-Hadro-Dynamics (QHD) in mean-field approximation (cf. Appendix G),
which provides a flexible covariant approach for the description of nucleonic
degrees of freedom. The semiclassical limit of the dynamical equations in phase-
space representation will lead to Relativistic BUU (RBUU) equations that allow
to extend the range of applicability to higher energies where also multi-particle
production from binary scatterings comes into play. Illustrative examples are
presented for Au+Au collisions at 1 A GeV with a particular emphasis on the role
of the nucleon selfenergies for the formation of collective flow. Now the question
comes up how to obey “detailed-balance,” i.e. how to describe the backward

3 This notation is conventionally used for fixed-target experiments and denotes the kinetic energy
per nucleon of the projectile in the laboratory frame.
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reactions n → 2 for n > 2. A solution to this problem will be presented in a
transport theoretical framework for transition matrix elements that are not dependent
on the angular distribution of the final states and essentially depend on the invariant
energy

√
s of the collision partners.

At bombarding energies of 1–2 GeV/u (or A GeV) additional strangeness degrees
of freedom appear (�,�,K, K̄) as well as short lived vector mesons such as the
ρ-meson which either stem from pion-pion scattering or the decay of high-mass
baryonic resonances. Furthermore, the local baryon density achieves a couple of
times the nuclear saturation density (ρ0 ≈ 0.166 fm−3) such that the interaction
rate (or width) 
coll(j) of particle type j becomes large. Coupled-channel G-matrix
calculations—as well as related nonperturbative approaches—show that the spectral
functions of the antikaon K̄ as well as the ρ-meson become sizeably broadened in
the dense medium such that an on-shell quasiparticle approximation loses validity.
This also holds for nucleons which achieve a sizeable spectral width due to frequent
collisions. Accordingly, a covariant transport theory has to be formulated that
incorporates dynamical spectral functions and describes the “particle” properties
as well as the dynamical evolution in a medium also out-of equilibrium . This task
is addressed in Chap. 4 on the basis of the Kadanoff–Baym theory [17], which is
studied in detail for a scalar field theory, i.e. the φ4-theory in weak and strong
coupling. Apart from exploring the spectral properties of the degrees of freedom we
will derive the quantum Boltzmann limit from the Kadanoff–Baym equations and
compare the solutions as a function of the coupling strength. Furthermore, we will
derive covariant off-shell transport equations and propose an extended quasiparticle
Ansatz for a practical solution of these equations. A related formulation of off-
shell transport equations for fermions is briefly reported. Numerical simulations are
provided for the spectral evolution of vector mesons in heavy-ion collisions at 2
A GeV as well as for retarded electromagnetic fields in ultra-relativistic collisions
of Au + Au and Cu + Au at 21,300 A GeV, i.e. at invariant energies per nucleon√
sNN ≈ 200 GeV.
A couple of Appendices follow the text in order to recall basic elements of

scattering theory, many-body theory and field theory within the notation used
throughout this book. Particular examples and model cases are included in order
to illustrate various physical aspects and to provide actual numbers for orientation.

This book includes a variety of exercises throughout all chapters that further
introduce technical aspects and helpful model studies. Solutions for the exercises
can be found at the end of each chapter.
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2Nonrelativistic On-Shell Kinetic Theories

This chapter is devoted to the derivation of nonrelativistic transport equations
on the basis of many-body theory for different levels of truncation. Contrary to
classical transport equations this derivation starts from the quantum mechanics of
wavefunctions incorporating the antisymmetry of the N-body wavefunction with
respect to particle exchange for systems of fermions. We will use the conventional
Schrödinger picture of quantum mechanics1 and present a coupled set of equations
of motion for density matrices of rank 1 ≤ n ≤ N , where N denotes the conserved
number of fermions in the system. By introducing a cluster expansion for the n-body
density matrices different truncation schemes can be formulated that are compatible
with conservation laws and preserve the antisymmetry of the system. A Wigner
transformation to phase-space variables then provides the basis for the formulation
of kinetic theories and their approximations employed. The lower order truncation
schemes are presented in detail and numerical examples are given to provide some
idea about the relative range of validity or applicability. To this end we will derive
equations of motion for “testparticles” that simulate the time evolution of the system
in phase space. A brief summary and critical discussion of the results achieved will
close this chapter.

2.1 Time Evolution of N-body Interacting Fermi Systems

In case of nonrelativistic systems, i.e. when the mass of the particles is large
compared to their kinetic energy, a many-body system consisting of N-interacting
fermions is most conveniently described in the Schrödinger picture of quantum
mechanics, where the time evolution of the system is governed by a N-body

1 A reminder of the different pictures of quantum mechanics is given in Appendix A.
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Hamiltonian ĤN . We thus may start with the N-body Schrödinger equation2

i
∂

∂t
�N(1, . . . , N; t) = ĤN(1, . . . , N)�N(1, . . . , N; t) (2.1)

and its Hermitian conjugate

− i ∂
∂t ′
�∗N(1′, . . . , N ′; t ′) = ĤN(1′, . . . , N ′)�∗N(1′, . . . , N ′; t ′) (2.2)

using ĤN = Ĥ †
N as mandatory for a Hamiltonian. In Eqs. (2.1) and (2.2) the lower

index N stands for the number of fermions in the system which should not be
mixed up with the variable N of the wavefunction since we use the notation i for
the coordinates of particle i, (e.g.: i ≡ ri , σi , τi ≡ space ri , spin, isospin, etc.).
The variable N then stands for N ≡ (rN, σN, τN ). Alternatively, one might use
the momentum representation for particle i or any other unitary transformation of
coordinates.

As an example we consider the case of 3 particles where the 3-body wavefunction
�3 in coordinate-space representation reads explicitly

�3(r1, σ1, r2, σ2, r3, σ3; t), (2.3)

and its conjugate

�∗3 (r′1, σ ′1, r′2, σ ′2, r′3, σ ′3; t ′), (2.4)

with σi denoting the spin projections. In case of additional discrete internal quantum
numbers (like isospin τi or flavor fi ) the list of continuous or discrete variables has
to be increased to (ri , σi , τi , . . . ≡ i). Note that the wavefunction �N has to be
antisymmetric with respect to particle exchange, i.e. (for N = 3)

�3(1, 2, 3; t) = −�3(2, 1, 3; t) = �3(3, 1, 2; t) = −�3(3, 2, 1; t), etc. (2.5)

Multiplying (2.1) by �∗N , (2.2) by �N and taking the difference we obtain

i

(
∂

∂t
+ ∂

∂t ′

)
�N(1, . . . , N; t) �∗N(1′, . . . , N ′; t ′) (2.6)

=
(
ĤN(1, . . . , N)− ĤN(1′, . . . , N ′)

)
�N(1, . . . , N; t)�∗N(1′, . . . , N ′; t ′).

2 For convenience we will use natural units h̄ = c = 1 throughout this work if not specified
explicitly.
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Defining two-time density-matrix elements by

ρN(1, . . . , N, 1
′, . . . , N ′; t, t ′) = �N(1, . . . , N; t)�∗N(1′, . . . , N ′; t ′), (2.7)

which are the matrix elements of the density-matrix operator ρ̂N (t, t ′),

ρN(1, . . . , N, 1′, . . . , N ′; t, t ′) = 〈1′, . . . , N ′|ρ̂N(t, t ′)|1, . . . , N〉, (2.8)

we obtain

i

(
∂

∂t
+ ∂

∂t ′

)
ρ̂N (t, t

′) =
(
ĤN(1, . . . , N)ρ̂N (t, t

′)− ρ̂N (t, t ′)ĤN(1′, . . . , N ′)
)

(2.9)

or in shorthand form as an operator equation

i

(
∂

∂t
+ ∂

∂t ′

)
ρ̂N = [ĤN, ρ̂N ], (2.10)

where [., .] denotes the usual commutator. When performing a Fourier transforma-
tion with respect to t and t ′,

ρ̂N (ω, ω
′) =

∫
dt

∫
dt ′ exp(−iωt + iω′t ′) ρ̂N (t, t ′), (2.11)

Eq. (2.10) turns to

[
(ω − ĤN)− (ω′ − Ĥ ′N)

]
ρ̂N (ω, ω

′) = 0, (2.12)

where Ĥ ′N acts on the coordinates i ′ and ĤN on the coordinates i. Since ĤN = Ĥ †
N

the Hamiltonian has eigenvalues on the real axis in ω, which gives singularities in
ω for the inverse operator (ω − ĤN)−1. Adding some infinitesimal 2iερ̂N we get

[
(ω − ĤN + iε)− (ω′ − Ĥ ′N − iε)

]
ρ̂N (ω, ω

′) = 0. (2.13)

With the retardedN-body Green’s operator defined by

ĜN(ω) :=
[
ω − ĤN + iε

]−1
(2.14)
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we can rewrite Eq. (2.13) as

[
ĜN(ω)

−1 − Ĝ†
N(ω

′)−1
]
ρ̂N (ω, ω

′) = 0, (2.15)

where ĜN(ω) acts on coordinates i and ĜN(ω′) on coordinates i ′.
It is worth to comment on the relation of ρ̂N to the statistical operator ρSt in quan-

tum statistics. To establish this connection we expand the N-body wavefunction
in terms of complete antisymmetric N-body basis states (e.g. Slater determinants
�k(1, . . . , N)),

�N(1, . . . , N; t) =
∑
k

ck(t)�k(1, . . . , N), (2.16)

where the ck(t) are complex time-dependent expansion coefficients. The N-body
density ρN then has the following matrix elements:

ρN(1, . . . , N, 1
′ . . . N ′; t, t ′) =

∑
k

∑
k′
ck(t)c

∗
k′(t
′) �k(1, . . . , N)�∗k′(1

′, . . . , N ′).

(2.17)

This will not change Eq. (2.10) due to the unitary transformation (2.16). When keep-
ing only diagonal terms in the expansion of ρN , i.e. the coefficients ck(t)c∗k (t ′) =:
Pk(t)δ(t − t ′) one loses information and thus introduces a finite entropy in the sys-
tem, which will increase with time according to the second law of thermodynamics.
In this case the real quantities Pk(t) have the interpretation of a time-dependent
probability for the occupation of the state�k in the system. Furthermore, in thermal
equilibrium the occupation numbers become time-independent and ρN leads to the
statistical operatorρSt in quantum statistics, although with a different normalization,
i.e. divided by N !. On the other hand a two-time formulation will be needed for the
formulation of off-shell transport theories on the basis of Green’s functions in case
of strongly-interacting systems (cf. Chap. 4).

2.2 The Density-Matrix Formalism

The quantum mechanical N-body problem (2.9) in practice cannot be solved in
case of interacting systems involving many particles. Accordingly, one has to give
up information and restrict to the dynamics of lower complexity, i.e. to reduced
density matrices of lower rank and ultimately derive nonlinear equations of motion
for the one-body density matrix ρ1(1, 1′; t) while shifting higher order correlations
to resummed matrix elements of the interaction. This strategy leads to the density-
matrix formalism.
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Within this formalism one conventionally restricts to a single time t , i.e. one
considers only the time-diagonal information in ρN ,

ρN(1, . . . , N, 1
′, . . . , N ′; t) = ρN (1, . . . , N, 1′, . . . , N ′; t, t ′) δ(t − t ′), (2.18)

which gives the von-Neumann equation for the density matrix ρN(t),

i
∂

∂t
ρN(1, . . . , N; 1′..N ′; t) = [ĤN, ρN (1, . . . , N; 1′..N ′; t)] . (2.19)

In the following we will assume that the Hamiltonian is approximately given by a
mean-field part and mutual two-body interactions,

ĤN =
N∑
i=1

h0(i)+
N−1∑
i<j

v(ij), (2.20)

where

h0(i) = t (i)+ U0(i) (2.21)

gives the one-body part of ĤN , consisting of the kinetic energy of particle i and
a (possible) external mean-field potential U0(i), which e.g. might be an external
electromagnetic field, while v(ij) describes a two-body interaction. Equation (2.19)
is practically not solvable for many-body systems such that suitable approximation
schemes are required.

To this aim we introduce reduced density matrices ρn(1 . . . n, 1′ . . . n′; t),
which are defined by taking the trace over particles n + 1, . . . , N of the N-body
density matrix ρN :

ρn = 1

(N − n)!T r(n+1,...,N)ρN = 1

(n+ 1)
T r(n+1)ρn+1. (2.22)

In the reduced density matrices ρn all information about particles from n + 1 to N
thus is integrated out. In (2.22) the relative normalization between ρn and ρn+1 is
fixed and it is useful to choose the normalization

T r(1,...,N) ρN = N !, (2.23)

which leads to the following normalization for the one-body density matrix,

T r(1=1′)ρ(11′; t) =
∑
i

〈a†
i ai〉 = N, (2.24)
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i.e. the particle number for theN-body Fermi system. In Eq. (2.24) a†
i and ai denote

Fermion creation and annihilation operators that follow the Fermi anti-commutation
laws. The normalization of the two-body density matrix then reads

T r(1,2)ρ2 =
∑
i,j

〈a†
i a

†
j aj ai〉 = −

∑
i,j

〈a†
i a

†
j aiaj 〉 =

∑
i,j

{〈a†
i aia

†
j aj 〉 − 〈a†

i aj 〉δij }

(2.25)

= (N − 1)
∑
j

〈a†
j aj 〉 = N(N − 1).

In analogy we obtain for the traces of the density matrices ρn (for n ≤ N),

T r(1,...,n)ρn = N !
(N − n)! , (2.26)

since for n = N the density matrix ρN is normalized to N ! according to (2.26).

Exercise 2.1: Prove Eq. (2.26) starting from (2.23).

Now taking the trace T r(n+1,...,N)) of the von-Neumann equation (2.19), one
obtains a system of coupled differential equations of first-order in time t , which is
denoted as BBGKY hierarchy (according to the authors Bogolyubov, Born, Green,
Kirkwood, and Yvon),

i
∂

∂t
ρn =

n∑
i=1

[
h0(i), ρn

]
+

n−1∑
1=i<j

[v(ij), ρn]+
n∑
i=1

T rn+1[v(i, n+ 1), ρn+1]
(2.27)

for 1 ≤ n ≤ N . This system is of finite order in case of nonrelativistic systems
since ρN+1 = 0. In (2.27) the time evolution of ρn couples to the time evolution
of ρn+1 by the interaction v(ij) for 1 ≤ i ≤ n and j = n + 1. Accordingly, the
system of equations is not closed in any order n < N and becomes equivalent to the
von-Neumann equation (2.19) for n = N .

At first sight one might not gain anything but let us have a closer look at the
equations of lowest order. The equations for n = 1 and n = 2 read explicitly:

i
∂

∂t
ρ1 = [h0(1), ρ1] + T r2[v(12), ρ2], (2.28)

i
∂

∂t
ρ2 =

2∑
i=1

[
h0(i), ρ2

]
+ [v(12), ρ2] + T r3[v(13)+ v(23), ρ3], (2.29)



2.2 The Density-Matrix Formalism 13

which are not closed—as mentioned above—since the time evolution of ρ2 is still
determined by the 3-body density matrix ρ3. In order to obtain a closed set of
equations one has to introduce a suitable approximation for ρ3, which must be fully
antisymmetric in the particle indices as required for fermions in quantum mechanics.

2.2.1 Separation of Correlation Functions

The next step is to introduce a cluster expansion in the antisymmetrized form
(omitting the explicit t-dependence) [1]:

ρ1(11′) = ρ(11′), (2.30)

ρ2(12, 1′2′) = ρ(11′)ρ(22′)− ρ(12′)ρ(21′)+ c2(12, 1′2′)

= ρ20(12, 1′2′)+ c2(12, 1′2′) (2.31)

= A12ρ(11′)ρ(22′)+ c2(12, 1′2′),

with the two-body antisymmetrization operatorAij = 1−Pij . Here the permutation
operator Pij describes the exchange of particle indices as e.g. for the product
ρ(i, 1′)ρ(j, 2′):

Pij ρ(i, 1′)ρ(j, 2′) = ρ(j, 1′)ρ(i, 2′). (2.32)

The antisymmetric expansion for the three-body density matrix reads

ρ3(123, 1′2′3′) = ρ(11′)ρ(22′)ρ(33′)− ρ(12′)ρ(21′)ρ(33′) (2.33)

− ρ(13′)ρ(22′)ρ(31′)− ρ(11′)ρ(32′)ρ(23′)

+ ρ(13′)ρ(21′)ρ(32′)+ ρ(12′)ρ(31′)ρ(23′)

+ ρ(11′)c2(23, 2′3′)− ρ(12′)c2(23, 1′3′)

− ρ(13′)c2(23, 2′1′)+ ρ(22′)c2(13, 1′3′)

− ρ(21′)c2(13, 2′3′)− ρ(23′)c2(13, 1′2′)

+ ρ(33′)c2(12, 1′2′)− ρ(31′)c2(12, 3′2′)

− ρ(32′)c2(12, 1′3′)+ c3(123, 1′2′3′),

where c3 incorporates explicit 3-body correlations that are contained in ρ3 but are
not covered by the product terms in (2.33). For fermions the exchange symmetries
of the correlation matrix c2 read:

c2(12, 1′2′) = −c2(12, 2′1′) = −c2(21, 1′2′) = c∗2(1′2′, 12), etc.
(2.34)
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The trace relations (2.26) allow to calculate explicit trace relations for the corre-
lations cn which are included in Appendix B and evaluated for Fermi systems in
thermal and chemical equilibrium for orientation.

By neglecting c2 in (2.31) we get the limit of independent particles which is also
denoted as Time-Dependent Hartree–Fock (TDHF):

i
∂

∂t
ρ(11′; t) = [h0(1)− h0(1′)]ρ(11′; t)+ Tr(2=2′)[v(12)A12 − v(1′2′)A1′2′ ]

× ρ(11′; t)ρ(22′; t). (2.35)

This implies that all effects from collisions or correlations are incorporated in c2
and higher orders in c3, etc.

Exercise 2.2: Show that solutions of the TDHF equation

i
∂

∂t
ψα(r; t) =

⎛
⎝− 1

2m
∇r · ∇r +

∑
β

∫
d3r2 ψ

∗
β(r2; t)v(r− r2)ψβ(r2; t)nβ

⎞
⎠

×ψα(r; t) (2.36)

−
∑
β

∫
d3r2 ψ

∗
β(r2; t)v(r− r2)ψβ(r; t)ψα(r2; t)nβ

=: hHFψα(r; t),

where nβ denote time-independent occupation numbers with N = ∑β nβ ,
provide a solution for Eq. (2.35) with ρ(1, 1′; t) given by

ρ(1, 1′; t) = ρ(r, r′; t) =
∑
α

nαψ
∗
α(r
′; t)ψα(r; t). (2.37)

When discarding explicit three-body correlations c3 in (2.33) the remaining set
of equations is closed and we obtain for the one-body density matrix

i
∂

∂t
ρ(11′; t) = [h0(1)− h0(1′)]ρ(11′; t)

+ Tr(2=2′)[v(12)A12 − v(1′2′)A1′2′ ]ρ(11′; t)ρ(22′; t)
+ Tr(2=2′)[v(12)− v(1′2′)]c2(12, 1′2′; t) (2.38)
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and for the two-body correlation matrix (after some tedious analytic work)

i
∂

∂t
c2(12, 1′2′; t) = [h0(1)+ h0(2)− h0(1′)− h0(2′)]c2(12, 1′2′; t) (2.39)

+ Tr(3=3′)[v(13)A13 + v(23)A23

− v(1′3′)A1′3′ − v(2′3′)A2′3′ ]ρ(33′; t)c2(12, 1′2′; t)
+ [v(12)− v(1′2′)]ρ20(12, 1′2′)

− Tr(3=3′){v(13)ρ(23′; t)ρ20(13, 1′2′; t)− v(1′3′)ρ(32′; t)ρ20(12, 1′3′; t)
+ v(23)ρ(13′; t)ρ20(32, 1′2′; t)− v(2′3′)ρ(31′; t)ρ20(12, 3′2′; t)}
+ [v(12)− v(1′2′)]c2(12, 1′2′; t) (2.40)

− Tr(3=3′){v(13)ρ(23′; t)c2(13, 1′2′; t)− v(1′3′)ρ(32′; t)c2(12, 1′3′; t)
+ v(23)ρ(13′; t)c2(32, 1′2′; t)− v(2′3′)ρ(31′; t)c2(12, 3′2′; t)}
+ Tr(3=3′){[v(13)A13A1′2′ − v(1′3′)A1′3′A12] ρ(11′; t)c2(32, 3′2′; t) (2.41)

+ [v(23)A23A1′2′ − v(2′3′)A2′3′A12] ρ(22′; t)c2(13, 1′3′; t)},

which at first sight looks more complex than the BBGKY hierarchy.
To reduce the complexity (and to shorten the lengthy equations) we introduce a

one-body Hamiltonian for particle i by

h(i) = t (i)+ Us(i) = t (i)+ Tr(n=n′)v(in)Ainρ(nn′; t), (2.42)

h(i ′) = t (i ′)+ Us(i ′) = t (i ′)+ Tr(n=n′)v(i ′n′)Ai′n′ρ(nn′; t)

that includes the interaction in the self-generated time-dependent mean field. With
the abbreviations

Q=ij (t) = 1− Tr(n=n′)(Pin + Pjn)ρ(nn′; t),
Q=i′j ′(t) = 1− Tr(n=n′)(Pi′n′ + Pj ′n′ )ρ(nn′; t) (2.43)

we have introduced operators that account for medium corrections due to antisym-
metrization and will turn out to describe Pauli blocking. Accordingly an effective
interaction in the medium turns out to be given by

V=(ij) = Q=ij v(ij), V=(i ′j ′) = Q=i′j ′v(i ′j ′), (2.44)

with all exchange operators here acting to the right.
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The equations for ρ and c2 achieve the more compact form:

i
∂

∂t
ρ(11′; t) = [h(1)− h(1′)]ρ(11′; t)+ Tr(2=2′)[v(12)− v(1′2′)]c2(12, 1′2′; t),

(2.45)

and

i
∂

∂t
c2(12, 1′2′; t) =

⎡
⎣ 2∑
i=1

h(i)−
2′∑
i ′=1′

h(i′)

⎤
⎦ c2(12, 1′2′; t)

+ [V =(12)− V=(1′2′)]ρ20(12, 1′2′; t) (2.46)

+ [V =(12)− V=(1′2′)]c2(12, 1′2′; t) (2.47)

+ Tr(3=3′){[v(13)A13A1′2′ − v(1′3′)A1′3′A12]
× ρ(11′; t)c2(32, 3′2′; t) (2.48)

+ [v(23)A23A1′2′ − v(2′3′)A2′3′A12] ρ(22′; t)c2(13, 1′3′; t)}.

Equation (2.45) describes the propagation of a particle in the self-generated mean
field Us(i) with additional two-body correlations that are further specified in (2.46).
In Eq. (2.46) the first line describes the propagation of two particles in the mean
field Us , the second line incorporates off-shell collisions in the Born approximation
while the third line (2.47) incorporates a resummation of the in-medium interaction
in the sense of a G-matrix ladder resummation [2–4].3 After Fourier transformation
from time t to frequency/energyω one gets

v(ij)→ G(ij) = v + vg+20(ω)Q
=G = v

∞∑
n=0

(g+20(ω)Q
=v)n = v 1

1− g+20(ω)Q
=v

(2.49)

in analogy to the T -matrix equation4 but with an additional intermediate Pauli-
blocking operator Q= (2.43) according to (2.44). In this case the bare retarded
propagator includes the mean fields Us and reads (including the center-of-mass
motion)

G+0 (ω)→ g+20(ω) =
1

ω − h(1)− h(2)+ iε (2.50)

3 We will come back to this problem in Sect. 2.5.
4 cf. Appendix C.
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instead of G+0 . (cf. (C.6) in Appendix C, where the center-of-mass motion has been
separated.) These relations are readily derived in the limit i∂/∂t → ω̃ ≡ ω − ω′
(see below).

The last two lines in (2.41) describe additional particle—hole interactions that are
important for ground state correlations (or vacuum correlations) and the damping
of low energy collective modes but might be neglected for configurations at high
temperatures where also the Pauli-blocking operator plays a minor role [5].

2.2.2 ExpansionWithin a Single-Particle Basis

The coupled equations for ρ and c2 (2.45) and (2.46) are not well suited in their
present form to allow for an analytical or even numerical solution. To this aim we
expand ρ and c2 within a complete orthonormal single-particle basis ϕλ(r) ≡ 〈r|λ〉
as

ρ(11′; t) =
∑
λλ′
ρλλ′(t) ϕλ(r)ϕ

∗
λ′(r
′), (2.51)

c2(12, 1′2′; t) =
∑
λγ λ′γ ′

Cλγλ′γ ′(t) ϕλ(r1)ϕγ (r2)ϕ
∗
λ′(r
′
1)ϕ
∗
γ ′(r

′
2). (2.52)

The single-particle states ϕλ(r) here are arbitrary and for actual applications have
to be selected properly. As an example we consider the excitation of a nucleus with
mass numberA by some external probe. In this case the basis ϕλ(r)may be taken as
the single-particle basis that diagonalizes the stationary Hartree–Fock Hamiltonian,
which leads to a set of localized orthonormal states. In case of problems localized
in a finite volume with periodic boundary conditions one might use discrete plane
waves as in the example in Appendix D. For continuum problems a basis of plane
waves is conventionally employed if the localization of the system is no longer
fulfilled or the system is at least of sufficient size. Furthermore, a time-dependent
Hartree–Fock basis has been employed by Tohyama and collaborators in case of low
energy heavy-ion collisions [6–9].

We insert these expansions in (2.45) and (2.46) and multiply from the left
with ϕ∗α(r1)ϕα′(r1′) or ϕ∗α(r1)ϕ

∗
β(r2)ϕα′(r1′)ϕβ ′(r2′) and integrate over d3r1d

3r1′ or

d3r1d
3r2d

3r1′d3r2′ , respectively. The first two equations of the BBGKY hierarchy
then read for the expansion coefficients ραα′(t) (omitting the explicit t-dependence
in hαβ(t),Q=(t), ρ(t) and C(t)):

i
∂

∂t
ραα′ =

∑
λ

[hαλρλα′ − ραλhλα′ ] (2.53)

+
∑
β

∑
λγ

{〈αβ|v|λγ 〉Cλγα′β − Cαβλγ 〈λγ |v|α′β〉} ,
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and Cαβα′β ′(t)

i
∂

∂t
Cαβα′β ′ =

∑
λ

{hαλCλβα′β ′ + hβλCαλα′β ′ − Cαβλβ ′hλα′ − Cαβα′λhλβ ′ }

(2.54)

+
∑
λλ′γ γ ′

{Q=αβλ′γ ′ 〈λ′γ ′|v|λγ 〉(ρ20)λγ α′β ′ − (ρ20)αβλ′γ ′ 〈λ′γ ′|v|λγ 〉Q=λγα′β ′ }

(2.55)

+
∑
λλ′γ γ ′

{Q=αβλ′γ ′ 〈λ′γ ′|v|λγ 〉Cλγα′β ′ − Cαβλ′γ ′ 〈λ′γ ′|v|λγ 〉Q=λγα′β ′ } (2.56)

+AαβAα′β ′
∑
λλ′γ γ ′

Q⊥αγ ′λλ′ 〈λλ′|v|α′γ 〉Cγβγ ′β ′ (2.57)

with

Q=αβλ′γ ′ = δαλ′δβγ ′ − δαλ′ρβγ ′ − ραλ′δβγ ′, (2.58)

Q⊥αβα′β ′ = δαβ ′ρβα′ − δβα′ραβ ′

and the one-body Hamiltonian

hαλ = 〈α|t|λ〉 + 〈α|U0|λ〉 +
∑
γ γ ′
〈αγ ′|v|λγ 〉Aργγ ′ . (2.59)

In (2.59) we have, furthermore, used

(ρ20)αβα′β ′ = ραα′ρββ ′ − ραβ ′ρβα′ = Aαβραα′ρββ ′ (2.60)

and

〈αβ|v|α′β ′〉A = 〈αβ|v|α′β ′〉 − 〈αβ|v|β ′α′〉 (2.61)

for the antisymmetric matrix elements of the interaction v.

Exercise 2.3: Prove Eq. (2.53) for the expansions (2.51) and (2.52).

Equations (2.53) and (2.54)–(2.57) are the starting points for the derivation of
nonrelativistic kinetic theories; these equations are fully antisymmetric in the matrix
elements, closed in ρ and c2 and provide a quantum mechanical description of
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fermion systems even far from equilibrium. As we will show in the next subsection
these equations fulfill the conservation laws for fermion number, total momentum,
total angular momentum and energy.

It is, furthermore, instructive to consider these equations in a basis where
ραα′(t) =: δαα′nα(t),5 where they reduce to (dropping the explicit t-dependence
in nα(t) and Cαβα′β ′(t))

i
∂

∂t
nα =

∑
β

∑
λγ

{〈αβ|v|λγ 〉Cλγαβ − Cαβλγ 〈λγ |v|αβ〉} , (2.62)

and Cαβα′β ′(t)

i
∂

∂t
Cαβα′β ′ = {hαCαβα′β ′ + hβCαβα′β ′ − Cαβα′β ′hα′ − Cαβα′β ′hβ ′ } (2.63)

+ [(1− nα − nβ)〈αβ|v|α′β ′〉A nα′nβ ′ − nαnβ〈αβ|v|α′β ′〉A(1− nα′ − nβ ′)]
(2.64)

+
∑
λγ

{(1− nα − nβ)〈αβ|v|λγ 〉Cλγα′β ′ − Cαβλγ 〈λγ |v|α′β ′〉(1 − nα′ − nβ ′)}

(2.65)

+
∑
γ γ ′
[(nα′Aαβ − nαAα′β ′)〈αγ ′|v|α′γ 〉ACγβγ ′β ′

+ (nβ ′Aαβ − nβAα′β ′)〈βγ ′|v|β ′γ 〉ACαγα′γ ′ ] (2.66)

since

Q=αβλ′γ ′ = δαλ′δβγ ′(1− nα − nβ), (2.67)

Q⊥αβα′β ′ = δαβ ′δβα′(nα′ − nα)

and the one-body Hamiltonian reduces to

hα = 〈α|t|α〉 + 〈α|U0|α〉 +
∑
γ

〈αγ |v|αγ 〉Anγ . (2.68)

Note that the terms in (2.66) ∼ (nα′ − nα) and ∼ (nβ ′ − nβ) in case of systems
close to the ground state barely contribute if both states α′, α or β ′, β are occupied
or unoccupied. Accordingly, those terms are dominantly of particle-hole type and
contribute to ground state correlations [5].

5 The quantities nα(t) denote the occupation numbers of the states ϕα .



20 2 Nonrelativistic On-Shell Kinetic Theories

2.2.3 Conservation Laws

The rearrangement of terms in Eq. (2.54) at first sight might look arbitrary but any
meaningful truncation scheme has to obey some fundamental conservation laws.
This will be shown in the following.

(i) Particle Number
The particle number is given by the trace of ρ or in the discrete basis by

N(t) =
∑
α

ραα(t) =
∑
α

nα(t). (2.69)

Taking derivatives with respect to time t and inserting the equations of motion for
ραα(t) gives

i
d

dt
N(t) = i

∑
α

ρ̇αα(t) =
{∑
αλ

[hαλρλα − ραλhλα] (2.70)

+
∑
αβγ λ

[〈αβ|v|γ λ〉Cγλαβ − Cαβγλ〈γ λ|v|αβ〉]
⎫⎬
⎭ = 0,

as one easily verifies by redefining the summation indices αβ ↔ γ λ. Accordingly,
the fermion number is a conserved quantity.

(ii) Total Momentum (Angular Momentum)
The expectation value of the total momentum of the system is given by

〈P〉 = T r(p ρ) =
∑
α

〈α|p ρ|α〉 =
∑
αλ

〈α|p|λ〉ρλα, (2.71)

since the momentum p is a single-particle operator. In order to proof the conserva-
tion of momentum we first consider the time derivative of (2.71) and insert again
the equation of motion for ρλα(t);

i
d

dt
〈P〉 =

∑
αλ

〈α|p|λ〉iρ̇λα (2.72)

=
∑
αλλ′
〈α|p|λ〉[hλλ′ρλ′α − ρλλ′hλ′α]

+
∑
αβγ λλ′

〈α|p|λ〉[〈λβ|v|λ′γ 〉Cλ′γ αβ − Cλβλ′γ 〈λ′γ |v|αβ〉] = 0

when redefining the summation indices.
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In analogy to the total momentum one proofs the conservation of the total angular
momentum since this is again the sum of single-particle operators in case of angular
momentum conserving interactions or vanishing commutators [v, li ] = 0.

(iii) Energy
For all closed systems (without external forces, i.e. U0 ≡ 0) the total energy must
be a conserved quantity. It is the sum of the kinetic energy matrix elements

Ekin =
∑
αλ

〈α|t|λ〉ρλα, (2.73)

the contribution from the mean fields

EMF = 1

2

∑
αα′λλ′

ραα′ 〈α′λ′|v|αλ〉Aρλλ′, (2.74)

and the correlation energy

Ecor = 1

2

∑
αα′λλ′

〈αλ|v|α′λ′〉Cα′λ′αλ. (2.75)

Since the total energy is a 2-body operator one additionally needs the time evolution
of the matrix elements Cαβα′β ′ , i.e.

d

dt
E = d

dt
{Ekin + EMF + Ecor} (2.76)

=
∑
αλ

〈α|t|λ〉ρ̇λα + 1

2

∑
αα′λλ′

〈α′λ′|v|αλ〉A[ρ̇λλ′ραα′ + ρλλ′ ρ̇αα′ ]

+ 1

2

∑
αα′λλ′

〈α′λ′|v|αλ〉Ċαλα′λ′ = · · · = 0,

as obtained from inserting ρ̇ from (2.53) and Ċ from (2.54)–(2.57) and redefining
the summation indices. Accordingly, the total energy is a conserved quantity of the
system within the framework of the coupled equations of motion (2.53) and (2.54)–
(2.57). Here the different limits for the time evolution of the two-body correlations
C in (2.54)–(2.57) fulfill the conservation laws separately which allows to define
conserved approximation schemes of different sophistication.
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2.3 The Vlasov Equation

In order to clarify the physical meaning of Eqs. (2.53) and (2.54) we first consider
Eq. (2.53) in the limit Cαβα′β ′ ≡ 0, i.e.

∂

∂t
ραα′(t)+ i

[∑
λ

hαλ(t)ρλα′(t)− ραλ(t)hλα′(t)
]
= 0, (2.77)

or in space-time representation for ρ(x, x′; t) = 〈x′|ρ(t)|x〉:
∂

∂t
ρ(x, x′; t)+ i

[
− 1

2m
∇2
x + U(x; t)+

1

2m
∇2
x ′ − U(x′; t)

]
ρ(x, x′; t) = 0.

(2.78)

To simplify the notation we have discarded the discrete indices for spin, isospin, etc.
in (2.78) since these are not relevant for the following consideration. Furthermore,
we focus on local potentialsU(x; t), which include a possible external fieldU0(x; t)
(cf. (2.21)) as well as the one-body potential from the self-interactions of the
fermions Us(x, t),

U(x; t) = U0(x; t)+
∑

spin, isospin

∫
d3x2 v(x− x2) ρ(x2, x2; t), (2.79)

where the exchange part of the interaction (Fock-term) has been omitted for
simplicity since this gives a nonlocal interaction term which complicates the
notation.6 For the following examples we will neglect also an external potential
U0(x; t) such that the mean-field potential (2.79) is given by the local Hartree
potential, which is nothing but the interaction integral of the two-body interaction
v(x− x2) with the density ρ(x2) at position x2.

As one easily verifies by insertion (Exercise 2.2) a solution of Eq. (2.77) is given
by

ρ(x, x′; t) =
∑
α

nαψ
HF
α (x; t) ψ∗HFα (x′; t), (2.80)

e.g. with nα = 1 for the N lowest single-particle eigenstates ψHFα (t = 0) and
nα = 0 else, such that

∑
α

nα = N. (2.81)

6 When using Skyrme-like local two-body forces (∼ δ3(x − x2)) the antisymmetrization implies
that contributions to the mean field from the same spin and isospin projection are excluded.
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The single-particle states ψHFα (t) then have to follow the time-dependent Hartree–
Fock equation

(
i
∂

∂t
+ 1

2m
∇2
x − U(x; t)

)
ψHFα (x; t) = 0, (2.82)

which can be solved numerically for a given two-body interaction v. Stationary
solutions of Eq. (2.82) are obtained by iterating the Hartree–Fock equations

(
εα + 1

2m
∇2
x − U(x; t)

)
ψHFα (x) = 0 (2.83)

with respect to the N lowest lying single-particle energies εα and states ψHFα (x).
Some examples and illustrations are in order. To this end we first consider a spin

and isospin symmetric system in nuclear physics, i.e. the nucleus 40Ca consisting
of 20 protons and 20 neutrons with both spin projections occupied. We employ an
effective two-body interaction with a finite-range Yukawa term, a local Skyrme-
type interaction—simulating an effective 3-body force—as well as the Coulomb
interaction:

v(x − x2) = −A0
exp(−μ|x− x2|)
μ|x− x2| + B0δ

3(x− x2)ρ(x− x2)+ e
2

4π

δpp

|x− x2| ,
(2.84)

where δpp implies that the Coulomb interaction only is considered between two
protons. The range parameter μ is taken to be 2.5 fm−1 while the parameters A0
and B0 are fixed to give the binding energy of nuclear matter (EB/A ≈ −16 MeV)
at saturation density ρ0 ≈ 0.166 fm−3. The solutions of Eq. (2.83) then give
a stable nucleus in its ground state—well in line with experimental data for the
charge radius and binding energy of 40Ca—which, however, is a trivial stationary
solution of Eq. (2.77). In order to explore nonequilibrium phenomena one thus
has to generate initial conditions for the TDHF equations (2.82) that involve
nonequilibrium configurations in phase space. The systems of choice are heavy-ion
collisions , where two nuclei—initially in their mutual ground states—are boosted
towards each other (in z-direction) with some impact parameter b (in x-direction)
which should be smaller than the sum of the nuclear radii. Very central collisions
are described for impact parameter b = 0 where the nuclei hit each other head-on.
The optimal choice of the reference system is the nucleus-nucleus center-of-mass
system such that the total momentum of the system is ≡0. The magnitude of the
boost is determined by the kinetic energy of the projectile nucleons in the laboratory
frame—which conventionally is given in MeV/u (or more recently in A MeV)—
where the target is at rest. The numerical integration of the TDHF equations (2.82)
then provides the time-dependent single-particle states ψHFα (x; t) and consequently
ρ(x, x′; t) according to (2.80) as well as the mean field U(x; t) (2.79).
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Fig. 2.1 The mean-field potential U(x = 0, y = 0, z; t) (z = r‖) for central collisions of
40Ca+40Ca at beam energies of 20, 40, 80, and 140 MeV/u from TDHF calculations. The contour
lines correspond to 0,−5,−10,−15 . . .MeV from outside to inside

As a particular example Fig. 2.1 shows the selfconsistent mean field U(x =
0, y = 0, z = r‖; t) for central collisions of 40Ca +40 Ca at beam energies of 20,
40, 80, and 140 MeV/u from a Time-Dependent Hartree–Fock (TDHF) calculation.7

The contour lines in Fig. 2.1 correspond to 0,−5,−10,−15 . . .MeV from outside
to inside. The relative distance of the two nuclei at t = 0 was assumed to be 14 fm
such that they initially are clearly separated in space. The contour lines indicate a

7 This figure is taken from Ref. [10].
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rather simple time dependence of the selfconsistent mean field at these bombarding
energies:

1. The boundaries approximately move with a constant velocity in the initial
phase which extends to 60, 45, 32, and 25 fm/ at 20, 40, 80, and 140 MeV/u,
respectively.

2. The barrier between the mean fields vanishes completely within about 14, 10, 8,
6 fm/c at 20, 40, 80, and 140 MeV/u, respectively. These time scales are of the
same order of magnitude as the average collision times of energetic nucleons in
the reaction zone.

3. The nucleons move in a common mean field after contact, which is rather flat
and changes locally only by a few MeV.

Comment Since the occupation numbers in the expansion (2.80) are constant in
time the time evolution of the system in TDHF is isentropic, i.e. does not produce
entropy as required for an approach to equilibrium which is characterized by the
maximum in entropy.

In order to obtain a closer physical picture of the dynamics incorporated in
Eq. (2.78) it is advantageous to transform to the phase-space representation by
means of the Wigner transformation

ρ(r,p; t) =
∫
d3s exp(−ip · s) ρ(r+ s/2, r− s/2; t) (2.85)

with

x = r+ s/2, x′ = r− s/2 or r = (x+ x′)/2, s = x− x′. (2.86)

The quantum mechanical phase-space density ρ(r,p; t) has—in the classical
limit—the interpretation of the probability to find a particle at position r with
momentum p at time t .8 Independent from the classical limit an integration of (2.85)
over momentum9

ρ(r; t) =
∫
d3p

(2π)3
ρ(r,p; t) (2.87)

8 The Wigner transform (2.85) for quantum mechanical systems in general is not a positive definite
real function, but a Hermitian operator in phase space. Only in case of systems with large particle
number N and averaging over phase-space volumes of order h3 one should consider the classical
limit.
9 Note that one has to divide additionally by a factor (h̄c)3 to get the density in length−3 if the
momentum p has dimension energy/c.
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gives the spatial density ρ(r; t), while an integration over space gives the momen-
tum density ρ(p; t),

ρ(p; t) =
∫
d3r ρ(r,p; t); (2.88)

the factor 1/(2π)3 (corresponding to 1/(2πh̄)3 = h−3) in (2.87) is responsible for
the quantization in phase space for each degree of freedom (spin, isospin, etc.).

Exercise 2.4: The ground state wavefunction of a three-dimensional oscillator
is given by a Gaussian

ψ(r) = N0 exp(−r · r/(2b2)). (2.89)

Calculate the normalization factor N0 and the Wigner transform of
ψ∗(r′)ψ(r). What is the value at the origin? Does the interpretation of a
classical phase-space distribution hold?

In order to illustrate the global time evolution of a heavy-ion collision in phase-
space representation we show in Fig. 2.2 the Wigner function (with r‖ = z, k‖ =
kz = pz),

f̄ (r‖, k‖; t) =
∫
dx

∫
dy

∫
dkx

2π

∫
dky

2π
ρ(r,k; t), (2.90)

integrated over transverse degrees of freedom in phase space, from TDHF cal-
culations for central collisions of 40Ca +40 Ca at beam energies of 20, 40,
and 80 MeV/u.10 Due to the integration over transverse degrees of freedom this
distribution becomes practically positive definite such that one may interpret the
intensity of the dots as the probability to find a nucleon with momentum k‖ in beam
direction at the position r‖ (without knowing their position and momentum in the
orthogonal directions). In the plots the actual time is given in units of fm/c. At the
early times of 17, 13, and 12 fm/c for the different energies the nuclear distributions
are just shifted in momentum (up and down) in line with the actual beam energy. For
later times the nuclei overlap in coordinate space but keep approximately separated
in phase space and move apart for even longer times (not shown). Apparently
not very much happens with the impinging nuclei in the limit of TDHF at these
bombarding energies.

10 This figure is taken from: W. Cassing, Z. Phys. A 327 (1987) 87.
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Fig. 2.2 The phase-space density (2.90) for central collisions of 40Ca +40 Ca at beam energies
of 20, 40, and 80 MeV/u from TDHF calculations. The times are given in fm/c; the intensity of the
dots increases linearly from 0 to 1

After Wigner transformation of Eq. (2.78) (using ∇2
r+s/2 − ∇2

r−s/2 = 2∇s · ∇r)
and by partial integration we get

∂

∂t
ρ(r,p; t)+ p

m
· ∇rρ(r,p; t) (2.91)

+ i
∫
d3s exp(−ip · s)[U(r+ s/2; t) − U(r− s/2; t)] ρ(r+ s/2, r − s/2; t) = 0.
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Exercise 2.5: Show that

�∇2
x − �∇2

x ′ = �∇2
r+s/2 − �∇2

r−s/2 = 2 �∇s · �∇r,

where x = r+ s/2, x′ = r− s/2.
What is the Wigner transform of �∇s · �∇r ρ(r+ s/2, r− s/2) when assuming
that ρ(r, s) vanishes at si →±∞ for i = x, y, z?

This equation is equivalent to Eq. (2.77) due to the unitarity of the Wigner
transformation. In (2.91), however, one may neglect all higher order derivatives ≥
3rd order in case of sufficiently smooth potentials U(r; t) (cf. Fig. 2.1) and arrives
at

[U(r+ s/2)− U(r− s/2)] ≈ s · ∇rU(r), (2.92)

which is even exact for harmonic potentials. After partial integration (with
s exp(−ip · s) = i∇p exp(−ip · s) ) we obtain theVlasov equation :

∂

∂t
ρ(r,p; t)+ p

m
· ∇rρ(r,p; t)−∇rU(r; t) · ∇pρ(r,p; t) (2.93)

=
(
∂

∂t
+ p
m
· ∇r −∇rU(r; t) · ∇p

)
ρ(r,p; t) = 0.

Equation (2.93) is equivalent to

d

dt
ρ = 0 =

{
∂

∂t
+ ṙ · ∇r + ṗ · ∇p

}
ρ(r,p; t), (2.94)

and by comparison with (2.93) we get classical equations of motion for ṙ and ṗ, i.e.

ṙ = p
m
; ṗ = −∇rU(r; t). (2.95)

Accordingly (in the limit Nt →∞) the “testparticle” distribution

ρt (r,p; t) = 1

Nt

N ·Nt∑
i=1

δ(r− ri (t)) δ(p− pi (t)) (2.96)

is a solution of the Vlasov equation (2.93), if the testparticle coordinates and
momenta ri (t), pi (t) are solutions of the classical equations of motion (2.95). This
gives a suitable solution of the Vlasov equation in case of high statistics, i.e. in the
limit Nt →∞.



2.3 The Vlasov Equation 29

The Ansatz (2.96) with (2.95) is denoted in physics as on-shell testparticle
method and allows for convenient dynamical simulations of many-body systems
in a selfconsistent mean field U(r; t), which results from the mutual two-body
interaction v(r− r2) in (2.79). It is easy to show that the Vlasov equation conserves
particle number, total momentum, and angular momentum as well as energy.

For illustration Fig. 2.3 (left column) shows the density distribution of nucleons
ρ(x, y = 0, z; t) for a central collision of 40Ca +40 Ca at a beam energy of
40 MeV/u11 in the semiclassical limit according to the Vlasov equation (2.93)
within the testparticle method (2.96) up to times of 200 fm/c. The nuclei touch
at t ≈ 30 fm/c, completely overlap at t ≈ 50 fm/c and separate at t ≈ 80 fm/c
such that asymptotically again two moving nuclei are seen although with a slightly
lower average momentum. The middle column of Fig. 2.3 displays the momentum
distribution ρ(px, py = 0, pz; t) for the same collision at the same times. The
initial momentum distribution roughly corresponds to overlapping Fermi spheres
with about twice the value in the overlap region. In case of full overlap in
coordinate space this distribution shows two separate peaks which merge again
when the nuclei reseparate in coordinate space. Here the mean-field dynamics
leads to some isotropization in momentum space, however, does not equilibrate
in momentum space. The right column of Fig. 2.3 finally displays the phase-space
distribution f̄ (z, pz; t)—integrated over perpendicular degrees of freedom—for
the same system and closely resembles the results from the TDHF calculation in
Fig. 2.2. Thus the gradient expansion of the mean field up to second order apparently
works quite well in case of nucleus-nucleus collisions. This even works better for
larger nuclei such as 197Au or 208Pb. Note that the phase-space distributions are
clearly separated in phase space even at maximum overlap in coordinate space!

The two-peak structure of the momentum distribution at maximum overlap
deserves some more detailed study. To this aim we show in Fig. 2.4 again the
momentum distribution f (px, py = 0, pz; t) for a central collision of 40Ca+40Ca

at a beam energy of 40 MeV/u for time intervals of 10 fm/c. Up to the touching
configuration at ∼30 fm/c the shape is that of two overlapping Fermi spheres
as noted before. With the beginning overlap of the nuclei in coordinate space
the momentum distribution starts to develop two separate peaks which are most
pronounced during the time of maximum overlap at 50–60 fm/c. This is due to the
fact that the barrier of the common mean field at touching disappears (cf. Fig. 2.1)
and the quasiparticles in this region get accelerated. Since the distributions stay
separated in phase space—as pointed out before—they also must be separated in
momentum space at full overlap, i.e. after integration of the phase-space distribution
over coordinate space. When separating again the nuclei have to build up new
surfaces which goes along with a deceleration of the quasiparticles in the region
of the new surfaces. Accordingly, the momentum distribution shrinks again to a
nonseparated distribution without reaching full isotropy in momentum.

11 The convention for the specification of the bombarding energy per nucleon in the laboratory has
changed in time from MeV/u to A MeV.
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Fig. 2.3 (Left column) The density distribution ρ(x, y = 0, z; t) for a central collision of
40Ca +40 Ca at a beam energy of 40 MeV/u in the semiclassical limit according to the Vlasov
equation (2.93) within the testparticle method (2.96). (Middle column) The momentum distribution
ρ(px, py = 0, pz; t) for the same reaction in the semiclassical limit according to the Vlasov
equation (2.93) within the testparticle method (2.96). (Right column) The phase-space distribution
f̄ (z, pz; t)—integrated over perpendicular degrees of freedom—for the same reaction in the
semiclassical limit according to the Vlasov equation (2.93)
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Fig. 2.4 The momentum distribution f (px, py = 0, pz; t) for a central collision of 40Ca+40 Ca

at a beam energy of 40 MeV/u in the semiclassical limit according to the Vlasov equation (2.93)
within the testparticle method (2.96) for different times

One may thus conclude that the solution of the Vlasov equation in the semi-
classical limit well reproduces the dynamics from THDF in the energy range
considered, however, relaxation or stopping phenomena are not well described in
the context of Eq. (2.78) since two-body correlations have been discarded. The
two-body correlations of lowest order are elastic two-body collisions as known
phenomenologically from the dynamics of classical gas particles in a finite volume.
Actually we will find out in the next section that the lowest order two-body
correlations lead to such collisions although with some medium corrections due
to the antisymmetry of the many-body fermion problem.
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2.4 The Collision Term According to Uehling-Uhlenbeck

Whereas the derivation of the Vlasov equation could be realized without major
problems, the collision term in (2.45)

I (11′; t) := −iT r(2=2′)[v(12), c2(12, 1′2′; t)] (2.97)

or in a single-particle basis

Iαα′(t) = −i
∑
β

∑
λγ

{〈αβ|v|λγ 〉Cλγα′β − Cαβλγ 〈λγ |v|α′β〉} (2.98)

requires some more efforts and the explicit knowledge of the two-body correlations
in an arbitrary single-particle basis |α >.

We will start with the Born approximation and employ a discrete basis in which
the single-particle Hamiltonian hαλ(t) is approximately diagonal and ραα′(t) is
diagonal, i.e.

hαλ(t) ≈ εα(t)δαλ; ραα′(t) = nα(t)δαα′ . (2.99)

The single-particle equation of motion then reads

∂

∂t
nα(t) = Iαα(t) = −i

∑
β

∑
λγ

{〈αβ|v|λγ 〉Cλγαβ − Cαβλγ 〈λγ |v|αβ〉},

(2.100)

where the sum over β is the trace over the second collision partner. In this particular
basis the time evolution of the coefficients Cαβα′β ′(t) according to (2.54) reads in
lowest order Born approximation:

{
i
∂

∂t
− [εα + εβ − εα′ − εβ ′ ]

}
Cαβα′β ′(t) (2.101)

=
∑
λγ

{〈αβ|Q=v|λγ 〉(ρ20)λγ α′β ′ − (ρ20)αβλγ 〈λγ |vQ=|α′β ′〉}

= 〈αβ|v|α′β ′〉A[nα′nβ ′ (1− nα − nβ)− nαnβ(1− nα′ − nβ ′)](t)
=: 〈αβ|VB(t)|α′β ′〉,

where we have used thatQ= also becomes diagonal,

Q=αβλγ (t) = δαλδβγ [1− nα(t)− nβ(t)]. (2.102)
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Equation (2.101) is a differential equation of first order in time which can directly
be integrated. In the context of the further discussion about energy conservation
in two-body collisions we assume that the single-particle energies εα(t) ≈ εα
are smoothly varying functions of time with momentum distributions that might
be out-of equilibrium. This approximation is well fulfilled for stationary states
in a “large” volume. In case of vanishing homogenous solution of (2.101) the
coefficients Cαβα′β ′(t) are given by

Cαβα′β ′(t) = −i
∫ t
t0

dt ′ exp{−i[εα + εβ − εα′ − εβ ′ ](t − t ′)} 〈αβ|VB(t ′)|α′β ′〉,
(2.103)

which is easy to verify by insertion in (2.101). In Eq. (2.103) t0 denotes some
arbitrary initial time. Note that the occupation numbers in (2.103) in general depend
on t ′ and

〈αβ|VB(t)|α′β ′〉 = −〈α′β ′|VB(t)|αβ〉. (2.104)

Comment The formal solution of Eq. (2.101) may also be written as

Cαβα′β ′(t) = − i2
∫ ∞
t0

dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω − ω′)(t − t ′))

(2.105)

× 〈αβ|g+20(ω)VB(t
′)g−20(ω

′)|α′β ′〉

with the propagators g±20(ω) defined by

g±20(ω) =
1

ω − h(1)− h(2)± iγ (2.106)

with infinitesimal γ > 0 and matrix elements

〈α′β ′|g±20(ω)|αβ〉 = δαα′δββ ′g±αβ(ω) = δαα′δββ ′
1

ω − εα − εβ ± iγ . (2.107)

The solution (2.105) then reads alternatively

Cαβα′β ′(t) = − i2
∫ ∞
−∞
dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω − ω′)(t − t ′))

(2.108)

× 1

ω − εα − εβ + iγ 〈αβ|VB(t
′)|α′β ′〉 1

ω′ − εα′ − εβ ′ − iγ .
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When inserting (2.108) in Eq. (2.101) we obtain

(
i
∂

∂t
− (εα + εβ − εα′ − εβ ′)

)
Cαβα′β ′(t) (2.109)

= − i
2

∫ ∞
−∞
dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω− ω′)(t − t ′)

× (ω − ω′ − εα − εβ + εα′ + εβ ′) 1

ω − εα − εβ + iγ 〈αβ|VB(t
′)|α′β ′〉

× 1

ω′ − εα′ − εβ ′ − iγ

= − i
2

∫ ∞
−∞
dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω− ω′)(t − t ′)

×
(
〈αβ|VB(t ′)|α′β ′〉 1

ω′ − εα′ − εβ ′ − iγ

− 1

ω − εα − εβ + iγ 〈αβ|VB(t
′)|α′β ′〉

)
.

The integrations over dω′ (in the first term) and dω (in the second term) can be
carried out by means of the residue theorem to provide

∫ ∞
−∞

dω′

2π
exp(+iω′(t − t ′)) 1

ω′ − εα′ − εβ ′ − iγ = i exp(i(εα′ + εβ ′)(t − t ′))�(t − t ′)
(2.110)

(integration over the upper plane) and

∫ ∞
−∞

dω

2π
exp(−iω(t − t ′)) 1

ω − εα − εβ + iγ = −i exp(−i(εα + εβ)(t − t ′))�(t − t ′)
(2.111)

(integration over the lower plane), respectively. Now integrating the remaining first
term over dω and the second over dω′ we obtain δ(t − t ′) each. Due to the factor
δ(t − t ′) the exponential factors become unity and the final integrations over dt ′
give 〈αβ|VB(t)|α′β ′〉/2 from the first and second term. This completes the proof.
We will come back to this formal result when exploring higher order interaction
terms in the equations of motion for Cαβα′β ′(t) in Sect. 2.4.
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Exercise 2.6: Show that for real ω0 and ε > 0

∫ ∞
−∞

dω

2π

1

ω − ω0 ∓ iε = ±i. (2.112)

For the diagonal elements of the collision term (2.98), which are of relevance in
the limit (2.99), we obtain with (2.103)

Iαα(t) = −i
∑
β

∑
λγ

{〈αβ|v|λγ 〉Cλγαβ − Cαβλγ 〈λγ |v|αβ〉} (2.113)

= −
∑
β

∑
λγ

∫ t
t0

dt ′{exp{−i[ελ + εγ − εα − εβ ](t − t ′)}

× 〈αβ|v|λγ 〉〈λγ |VB(t ′)|αβ〉
− exp{−i[εα + εβ − ελ − εγ ](t − t ′)}〈αβ|VB(t ′)|λγ 〉〈λγ |v|αβ〉}.

Inserting the matrix elements of VB from (2.101) gives

Iαα(t) =
∑
β

∑
λγ

∫ t
t0

dt ′ 2 cos{[εα + εβ − ελ − εγ ](t − t ′)} (2.114)

· 〈αβ|v|λγ 〉〈λγ |v|αβ〉A[nλ(t ′)nγ (t ′)n̄α(t ′)n̄β(t ′)− nα(t ′)nβ(t ′)n̄λ(t ′)n̄γ (t ′)]

using n̄α(t ′) = 1−nα(t ′) and VB(t ′) from (2.101). Furthermore, we have added and
subtracted the term ∼ nα(t ′)nβ(t ′)nλ(t ′)nγ (t ′).

The last expression cannot be further evaluated analytically in case of rapidly
changing occupation numbers. However, assuming nα(t ′) ≈ nα(t) (in case of
weakly interacting systems) one can work out the time integration in (2.113) and
obtains (with t0 = 0)

lim
t→∞

∫ t
0
dt ′ 2 cos([εα + εβ − ελ − εγ ](t − t ′))

= lim
t→∞

2

[εα + εβ − ελ − εγ ] sin([εα + εβ − ελ − εγ ]t) (2.115)

= 2π δ(εα + εβ − ελ − εγ ) =: 2π δ(�ω),

the energy conservation for individual two-body interactions with�ω = εα + εβ −
ελ − εγ . This implies that the time in between subsequent two-body collisions
τs is large compared to the microscopic collision time τc, such that the energy
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uncertainty—associated with the collision—�ε ≈ 2πh̄/τs = h/τs becomes
sufficiently small. Note that the integral of (2.115) over�ω gives 2π also for finite t .

For the diagonal elements of the collision term we then obtain

Iαα(t) ≈ 2π
∑
β

∑
λγ

δ(εα + εβ − ελ − εγ )〈αβ|v|λγ 〉〈λγ |v|αβ〉A (2.116)

× [nλnγ n̄αn̄β − nαnβn̄λn̄γ ](t)

in the basis |α >, which diagonalizes the one-body density matrix ραα′ . In
quantum mechanics Planck’s constant h = 2πh̄ is actually a large number in
case of few-body systems and the approximation (2.115) not valid, however, in
case of sufficiently large systems the sum over β, λ, γ in (2.114) with oscillating
contributions in time t ′ dominantly gives contributions close to the energy shell.

In Appendix D the issue of on-shell collisions and interactions off the energy
shell is investigated in a finite box with periodic boundary conditions for the damp-
ing of the quadrupole moment in momentum space for nuclear matter slightly above
saturation density. As it is found there the off-shell and on-shell scattering results
give very similar decay rates for the quadrupole moment since the contributions
from off-shell matrix elements in (2.114) give oscillating contributions in time and
cancel out to a large extent after summing over the states for all collision partners
β and the final states λ, γ . Accordingly, the on-shell collision limit holds well
in this case with discrete energy differences, however, there might be physical
examples—with a low number of basis states involved—that may show sizeable
off-shell scattering effects!

The further evaluation of (2.116) will be carried out for sufficiently extended and
homogenous systems in the basis of plane waves

〈r|α〉 = 1

(2π)3/2
exp{ipα · r}, (2.117)

such that the density matrix ρ becomes diagonal in momentum p:

ρ(p,p′) =
∫
d3r exp{i(p− p′) · r} ϕ(p)ϕ∗(p′) = δ(p− p′)n(p). (2.118)

In (2.118) n(p) then has the physical meaning of an occupation probability for a
state with momentum p.

To simplify notation let us assume that the matrix elements of the interaction v
in (2.116) do not depend on spin and isospin and are spin and isospin conserving,
i.e. its space representation will read:

〈r1r2|v|r1′r2′ 〉 = δ(r1 − r1′)δ(r2 − r2′)v(r1 − r2), (2.119)
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or in momentum-space representation12

〈p1p2|v|p1′p2′ 〉 = (2π)3δ3(p1 + p2 − p1′ − p2′)v(p2 − p2′) (2.120)

with the Fourier transform

v(p2 − p2′) =
∫
d3s exp(−i(p2 − p2′) · s) v(s).

In Eq. (2.120) δ3(p1 + p2 − p1′ − p2′) expresses the momentum conservation in a
two-body reaction.

Exercise 2.7: Calculate the Fourier transform of the Yukawa interaction (with
μ > 0)

v(r) = V0
exp(−μ|r|)
|r| . (2.121)

What is the range of the interaction and the scattering amplitude in Born
approximation?

Within these assumptions one can carry out the further calculations analytically
and the expression (2.116) reads with ε(p) = p2/2m,

I (p1,p1; t) = (2s + 1)(2τ + 1)
∫
d3p2

(2π)3
d3p3

(2π)3
d3p4

(2π)3
(2.122)

× 2πδ

(
1

2m
[p2

1 + p2
2 − p2

3 − p2
4]
)
(2π)3δ3(p1 + p2 − p3 − p4) v(p2 − p4)

× vA(p4 − p2)

× (n(p3; t)n(p4; t)n̄(p1; t)n̄(p2; t)− n(p1; t)n(p2; t)n̄(p3; t)n̄(p4; t)) .

Equation (2.122) describes elastic scattering processes p1 + p2 → p3 + p4 (“loss”-
term) as well as p3 + p4 → p1 + p2 (“gain”-term) respecting energy-momentum
conservation (cf. Fig. 2.5). Furthermore, the states with momenta p3, p4 (in the
“loss”-term) or p1, p2 (in the “gain”-term) should not be fully occupied due to the
factors n̄(pi; t), which represent the Pauli principle for fermions in the final state.
The factors (2s + 1) for the summation over the spin of particle 2 and (2τ + 1) for
the summation over isospin (or further internal degrees of freedom) of particle 2 can

12 In the basis of plane waves this gives an additional factor (2π)−6.
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Fig. 2.5 Example for elastic
two-body scattering
p1 + p2 ↔ p3 + p4 in the
center-of-mass system with
the scattering angle �

be comprised in a factor d; in case of electrons we have (s = 1/2, τ = 0) d = 2,
while for nucleons (s = 1/2, τ = 1/2) in spin and isospin symmetric systems we
get d = 4.

Comment The collision integral (2.122) formally is an integral over all collision
partners (

∫
d3p2) and all final states (

∫
d3p3d

3p4) accounting for the final-state
blocking factors n̄(p3; t) n̄(p4; t) in the loss term, where the strength of the
interaction is controlled by the two-body matrix element (squared)W2,2 := vvA and
the energy-momentum conserving δ-functions. The gain term is the corresponding
time-reversed channel. We will come back to this formal result in Sect. 2.4.

The connection to two-body scattering becomes more transparent when relating
the product v · vA to the differential cross section dσ/d� in first-order Born
approximation,

dσ

d�
(p1 + p2,p2 − p4) = m2

16π2 v(p2 − p4)vA(p4 − p2), (2.123)

which leads to

I (p1,p1; t) = 16π2

m2

d

(2π)5

∫
d3p2d

3p3d
3p4 (2.124)

× δ
(

1

2m
[p2

1 + p2
2 − p2

3 − p2
4]
)
δ(p1 + p2 − p3 − p4)

dσ

d�
(p1 + p2,p2 − p4)

× {n(p3; t)n(p4; t)n̄(p1; t)n̄(p2; t)− n(p1; t)n(p2; t)n̄(p3; t)n̄(p4; t)}.

Equation (2.124) can be further simplified by a transformation to relative and
center-of-mass coordinates and integration over the δ-functions in (2.124). With the
nonrelativistic relative velocity defined by

v12 = 1

m
|p1 − p2| (2.125)
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one finally obtains

I (p1,p1; t) = d
∫
d3p2

(2π)3

∫
d� v12

dσ

d�
(p1 + p2,p2 − p4) (2.126)

× {n(p3; t)n(p4; t)n̄(p1; t)n̄(p2; t)− n(p1; t)n(p2; t)n̄(p3; t)n̄(p4; t)},

where � = (cos θ, φ) denotes the scattering angle in the center-of-mass system of
the colliding particles. Note that here the final momenta p3 and p4 are connected
to p1 and p2 by energy-momentum conservation (cf. Fig. 2.5). This form of
the collision integral has been proposed early by Nordheim [11] and Uehling-
Uhlenbeck [12].

Exercise 2.8: Derive Eq. (2.126) starting from (2.122) using (2.123).

Comment In case of thermodynamic equilibrium (for t → ∞) the collision term
vanishes, i.e. I (p; t)→ 0 for all p, the Fermi distribution

n(ε) = 1

exp(β(ε − μ))+ 1
(2.127)

(with Lagrange parameters β,μ for the (inverse) temperature and chemical poten-
tial) fulfills the necessary condition

{n(p3; t)n(p4; t)n̄(p1; t)n̄(p2; t)− n(p1; t)n(p2; t)n̄(p3; t)n̄(p4; t)} = 0
(2.128)

and thus is a solution of (2.126) for I (p1) = 0 independent from the strength of the
interaction.

Exercise 2.9: Show that the Fermi distribution (2.127) is a stationary solution
of the collision term, i.e. fulfills Eq. (2.128).

2.4.1 The Vlasov–Uehling–Uhlenbeck (VUU) Equation

The Vlasov–Uehling–Uhlenbeck (VUU) equation, also known as Vlasov-
Nordheim or Boltzmann–Uehling–Uhlenbeck (BUU) equation is obtained by
combining the Vlasov equation for the particle phase-space distribution ρ(r,p; t)
with the collision term (2.126) in phase-space representation, i.e. replacing the
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occupation numbers n(pi; t) by the “local” phase-space density ρ(r,pi; t) in
(2.126):

{
∂

∂t
+ p1

m
· ∇r −∇rU(r, t) · ∇p1

}
ρ(r,p1; t) = I (r,p1; t) (2.129)

= d
∫
d3p2

(2π)3

∫
d� v12

dσ

d�
(p1 + p2,p2 − p4)

× {ρ(r,p3; t)ρ(r,p4; t)ρ̄(r,p1; t)ρ̄(r,p2; t)
− ρ(r,p1; t)ρ(r,p2; t)ρ̄(r,p3; t)ρ̄(r,p4; t)}.

In Eq. (2.129) the “local” phase-space distribution has to be understood as an
average phase-space distribution in a local volume �V and finite time interval
�t of sufficient size such that the assumptions taken in the derivation become
approximately valid. Accordingly, numerical solutions of Eq. (2.129) have to be
performed on an appropriate space-time grid.

Classical Limits
In case of classical particles (at low phase-space densities or high temperatures)
Eq. (2.129) simplifies since the Pauli-blocking factors ρ̄(r,pi; t) ≈ 1. The further
approximation∇rU(r; t) = 0 then gives the classical Boltzmann equation [13,14]

{
∂

∂t
+ p1

m
· ∇r

}
ρ(r,p1; t) = d

∫
d3p2

(2π)3

∫
d� v12

dσ

d�
(p1 + p2) (2.130)

× {ρ(r,p3; t)ρ(r,p4; t)− ρ(r,p1; t)ρ(r,p2; t)},

which is used in the description of classical gases. In case of isotropic scattering of
the particles, i.e. dσ/d� = σ/(4π) the classical Boltzmann equation simplifies to

{
∂

∂t
+ p1

m
· ∇r

}
ρ(r,p1; t) = d

∫
d3p2

(2π)3
v12 σ(p1 + p2) (2.131)

× {ρ(r,p3; t)ρ(r,p4; t)− ρ(r,p1; t)ρ(r,p2; t)}.

Furthermore, in case of homogenous media the r-dependence drops out and one
obtains

∂

∂t
ρ(p1; t) = d

∫
d3p2

(2π)3
v12 σ(p1 + p2) {ρ(p3; t)ρ(p4; t)− ρ(p1; t)ρ(p2; t)}.

(2.132)
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The collisional width of a particle with momentum p1 then is determined by the loss
term and reads


(p1) = d
∫
d3p2

(2π)3
v12 σ(p1 + p2) ρ(p2). (2.133)

In case of approximately constant cross section σ(p1+p2) in center-of-mass energy
the latter can be taken out of the integral and the collisional width further simplifies
to


(p1) = 〈v12〉σ ρ̄ (2.134)

with the density

ρ̄ = d
∫
d3p2

(2π)3
ρ(p2) (2.135)

and the average relative velocity 〈v12〉.

2.5 Including Higher Order Interactions

So far we have considered the solution for the two-body correlations in lowest order
Born approximation, however, this limit does not hold in the context of nuclear
physics where a resummation of the bare interaction v in the sense of a G-matrix is
mandatory for nonrelativistic energies.13 Accordingly we take into account further
interactions in the equations of motion for Cαβα′β ′(t) (2.63), i.e.

i
∂

∂t
Cαβα′β ′ =

∑
λ

{hαλCλβα′β ′ + hβλCαλα′β ′ − Cαβλβ ′hλα′ − Cαβα′λhλβ ′ }

(2.136)

+
∑
λλ′γ γ ′

{Q=αβλ′γ ′ 〈λ′γ ′|v|λγ 〉(ρ20)λγ α′β ′ − (ρ20)αβλ′γ ′ 〈λ′γ ′|v|λγ 〉Q=λγα′β ′ }

+
∑
λλ′γ γ ′

{Q=αβλ′γ ′ 〈λ′γ ′|v|λγ 〉Cλγα′β ′ − Cαβλ′γ ′ 〈λ′γ ′|v|λγ 〉Q=λγα′β ′ },

where all terms with Q⊥ (particle-hole channels) have been discarded. This limit
also conserves particle number, total momentum, angular momentum, and energy.

13 In Appendix C we recall the two-body scattering in vacuum and demonstrate that the Born
approximation gives inadequate results for low energy nucleon-nucleon scattering such that a
resummation of the interaction in terms of a T -matrix is mandatory in this case.
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For the further formulation it is of advantage to rewrite (2.136) as

〈αβ|(i ∂
∂t
C2 − (h(1)+ h(2)+Q=v)C2(t)+ C2(t)(h(1

′)+ h(2′)+ vQ=†)|α′β ′〉
(2.137)

= 〈αβ|Q=vρ20 − ρ20vQ
=†|α′β ′〉(t) = 〈αβ|VB(t)|α′β ′〉.

This equation is of similar structure as the Born limit (2.101), however, with extra
termsQ=vC2 and C2vQ

= on the l.h.s. , while the inhomogenous terms on the r.h.s.
are identical.

Instead of the propagators g±20(ω) (2.106) we now define the in-medium two-
body propagators

g±2 (ω) =
1

ω − h(1)− h(2)−Q=v ± iγ (2.138)

with infinitesimal γ > 0. The relation between g2(ω) and g20(ω) is given by the
Dyson equation14

g±2 (ω) = g±20(ω)+ g±20(ω)Q
=vg±2 (ω) = g±20(ω)+ g±20(ω)Q

=vg±20(ω) (2.139)

+ g±20(ω)Q
=vg±20(ω)Q

=vg±20(ω)+ · · ·

= g±20(ω)(

∞∑
n=0

(Q=vg±20(ω))
n = �̂±(ω)g±20(ω)

with the in-medium Moeller operator defined by

�̂±(ω) =
∞∑
n=0

(
g±20(ω)Q

=v
)n

(2.140)

that includes the in-medium interactions v as well as the blocking operator Q=
in infinite order. Here we have assumed that the continuum spectra of g±2 (ω) and
g±20(ω) are the same and complete. The Moeller operator follows

�̂±(ω) = 1+ g±20(ω)Q
=v�̂±(ω) = 1

1− g±20(ω)Q
=v
, (2.141)

which gives

�̂±(ω)− 1 = g±20(ω)Q
=v�̂±(ω) = �̂±(ω)g±20(ω)Q

=v. (2.142)

14 Here we use the operator identity [A + B]−1 = A−1(1 − B[A + B]−1) and employ A =
(ω − h(1) − h(2) ±+iγ ) and B = −Q=v.



2.5 Including Higher Order Interactions 43

Furthermore, note that (�̂+(ω)− 1)† = �̂−(ω)− 1. We mention in passing that the
in-medium Moeller operator differs from that in vacuum15 only by the additional
Pauli-blocking operatorQ=.

Exercise 2.10: Prove the operator identity [A+B]−1 = A−1(1−B[A+B]−1).

The formal solution to Eq. (2.136) is given (in analogy to (2.105)) by

〈αβ|C2|α′β ′〉(t) = − i
2

∫ ∞
t0

dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω − ω′)(t − t ′)

(2.143)

× 〈αβ|g+2 (ω)[Q=vρ20(t
′)− ρ20(t

′)vQ=†]g−2 (ω′)|α′β ′〉

with the propagators g±2 (ω) defined by Eq. (2.138). Note that Q= and ρ20 in
general depend on time t ′ explicitly such that the formal solution cannot be worked
out analytically in the general case. In order to get some idea about the physics
incorporated we consider again the basis of plane waves (in a sufficiently large
volume �V ), approximately constant occupation numbers (in some finite time
interval�t) and use (2.139) to rewrite (2.143) as

〈αβ|C2|α′β ′〉(t) = − i
2

∫ ∞
t0

dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω − ω′)(t − t ′)

(2.144)

× 〈αβ|�̂+(ω)g+20(ω)[Q=vρ20(t
′)− ρ20(t

′)vQ=†]g−20(ω
′)�̂−(ω′)|α′β ′〉.

In this case the matrix elements of g20(ω) are well known and Q= as well as ρ20
become diagonal. With the identity (2.142) the solution may be rewritten as

〈αβ|C2|α′β ′〉(t) = − i
2

∫ ∞
t0

dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω − ω′)(t − t ′)

(2.145)

×
(
〈αβ|(�̂+(ω)− 1)ρ20(t

′)g−20(ω
′)�̂−(ω′)|α′β ′〉

−〈αβ|�̂+(ω)g+20(ω)ρ20(t
′)(�̂−(ω′)− 1)|α′β ′〉

)
.

15 cf. Appendix C.
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The next step is to evaluate �̂+(ω) at the energy (εα+εβ) and �̂−(ω′) at (εα′ +εβ ′)
which gives

〈αβ|C2|α′β ′〉(t) = − i
2

∫ ∞
t0

dt ′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
exp(−i(ω − ω′)(t − t ′)

(2.146)

× (〈αβ|�̂+(εα + εβ)ρ20(t
′)g−20(ω

′)�̂−(εα′ + εβ ′)|α′β ′〉
− 〈αβ|�̂+(εα + εβ)g+20(ω)ρ20(t

′)�̂−(εα′ + εβ ′)|α′β ′〉
− 〈αβ|ρ20(t

′)g−2 (ω
′)|α′β ′〉 + 〈αβ|g+2 (ω)ρ20(t

′)|α′β ′〉).

The integrations over dω (or dω′) give a δ-function in (t − t ′) as in the beginning
of Sect. 2.4. Then integrating the propagators over dω′/(2π) (or dω/(2π)) gives
factors of i and −i, respectively. The final integration over dt ′ then leads to

〈αβ|C2|α′β ′〉(t) = 〈αβ|�̂+(εα + εβ)ρ20(t)�̂
−(εα′ + εβ ′)|α′β ′〉 − 〈αβ|ρ20(t)|α′β ′〉

(2.147)

which gives the result for the two-body density matrix

〈αβ|ρ2(t)|α′β ′〉 = 〈αβ|�̂(εα + εβ)ρ20(t)�̂
†(εα′ + εβ ′)|α′β ′〉 (2.148)

when identifying �̂ = �̂+ and �̂† = �̂−.

2.5.1 Definition of Selfenergies

Since the states |αβ > are complete we may define an interacting two-body density
operator ρ2(t) in ladder resummation by

ρ2(t) = �̂(ω)(t)ρ20(t)�̃(ω)
†(t) (2.149)

with the in-medium Moeller operator defined by (2.140). Note that this result only is
obtained within finite time intervals �t and spatial volumes �V of sufficient size.
Furthermore, the time dependence of ρ20(t) should not be too rapid in the four-
volume �t�V . These conditions are fulfilled in vacuum and Eq. (2.149) is exact
(and time-independent) as demonstrated for two-body scattering in the vacuum
in Appendix C. Under these constraints we can define the resummed complex
interaction G(ω) (or G-matrix) as

G(ω) = v�̂(ω). (2.150)
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This leads to the identities (Q=† = Q=)

�̂(ω) = 1+ g+20(ω)Q
=v�̂(ω) = 1+ g+20(ω)Q

=G(ω) (2.151)

�̂(ω)† = 1+ G(ω)†Q=g−20(ω)

which will be exploited in different versions (using e.g. �(GG†) = 0). This complex
(and energy-dependent) two-body interaction in lowest order Born approximation is
given by the bare interaction v. Furthermore, in a low density medium (i.e. Q= →
1) we regain the free T -matrix T (ω) as recalled in Appendix C. The effect of the
Pauli-blocking operatorQ= will be more pronounced for low energy scattering with
kinetic energies below (or of the order of) the local Fermi energy for the system
leading to a substantial reduction of the interaction cross section for low invariant
energies above threshold.

Having established this specific (nonperturbative) limit of the many-body prob-
lem we may rewrite the matrix elements

Tr(2=2′)〈1′2′|[v, ρ2]|12〉 = T r(2=2′)〈1′2′|(vρ2 − ρ2v)|12〉 (2.152)

= Tr(2=2′)〈1′2′|(G(ω)ρ20�̂(ω)
† − �̂(ω)ρ20G(ω)†)|12〉

and obtain (using (2.151))

Tr(2=2′)〈1′2′|[v, ρ2]|12〉 = Tr(2=2′)〈1′2′|(G(ω)ρ20 − ρ20G(ω)†)|12〉 (2.153)

+ Tr(2=2′)〈1′2′|(G(ω)ρ20G(ω)†Q=g−20(ω)− g+20(ω)Q
=G(ω)ρ20G(ω)†)|12〉.

This allows to define the real part of the selfenergy �(�) as:

〈1′|[�(�), ρ]|1〉 = Tr(2=2′)〈1′2′|[�(G), ρ20]|12〉 (2.154)

or

〈1′|�(�)|1〉 = Tr(2=2′)〈1′2′|�(G)Aρ|12〉. (2.155)

The imaginary part of the selfenergy follows accordingly from the imaginary part
of G as:

〈1′|[�(�), ρ]|1〉 = Tr(2=2′)〈1′2′|[�(G), ρ20]|12〉 (2.156)

or

〈1′|�(�)|1〉 = Tr(2=2′)〈1′2′|�(G)Aρ|12〉, (2.157)
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which will turn out to give half the loss part in the collision term (see below). In
lowest order in the interaction v we regain the selfconsistent Hartree–Fock potential
Us in (2.42) while the series in (2.49) provides a controlled higher order expansion
for the selfenergy �(�).

We now separate the real and imaginary parts of the commutator (2.152)
employing additionally the identity

�(G) = G†Q=G�(g+20) (2.158)

since G†Q=G, Q= and v are Hermitian operators.
For the remaining parts of the commutator we have

Tr(2=2′)〈1′2′|(�(G(ω))ρ20 − ρ20�(G(ω)†))|12〉) (2.159)

+ Tr(2=2′)〈1′2′|(G(ω)ρ20G(ω)†Q=g−20(ω)− g+20(ω)Q
=G(ω)ρ20G(ω)†)|12〉

since ρ20 is Hermitian. The further steps in the evaluation of the collision term
follow the same procedure as in the beginning of Sect. 2.4 within a basis of plane
waves. Accordingly, (2.159) is identical to an Uehling-Uhlenbeck on-shell collision
term for fermions where the imaginary part of g+20 gives an energy conserving δ-
function, the matrix element squared is given by GG†A andQ= introduces the Pauli-
blocking factors. Recall that in this basis the one-body density matrix in momentum
space andQ= are diagonal, i.e.

〈p′|ρ|p〉 = δ3(p′ − p)f (p) (2.160)

〈p′1p′2|Q=|p1p2〉 = δ3(p′1 − p1)δ
3(p′2 − p2)

(
1− f (p′1)− f (p′2)

)

〈p′1p′2|G|p1p2〉 = δ3(p1 + p2 − p′1 − p′2)G(p2 − p′2).

Here we have dropped again the discrete quantum numbers in the matrix elements
(spin, isospin, etc.). Note that

〈p′1p′2|�(g+20(ω))|p1p2〉 = δ3(p′1 − p1)δ
3(p′2 − p2)

−iε
(ω − h(p1)− h(p2))2 + ε2

(2.161)

= −πδ3(p′1 − p1)δ
3(p′1 − p1)δ(ω − h(p1)− h(p2)).

In lowest order we regain the Born transition matrix element squared vv†
A in the

collision term, where the antisymmetrization A only works for the interaction of
fermions with the same spin (and isospin). The relation to the differential cross
section dσ/d� for nonidentical particles is given by

dσ

d�
= m2

16π2G(q)G†(q) (2.162)
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where q is the momentum transfer in the elastic scattering event. Defining the
(resummed) single-particle Hamiltonian by

heff (r,p; t) = p2

2M
+�(�(r,p; t)) (2.163)

the nonrelativistic (and nonperturbative) transport equation for Fermions finally
reads:

(
∂

∂t
+ ∇pheff (r,p; t) · ∇r − ∇rheff (r,p; t) · ∇p

)
ρ(r,p; t) (2.164)

= d
∫
d3p2

(2π)3

∫
d3p′1
(2π)3

∫
d3p′2
(2π)3

|GG†A(p1 + p2,p′2 − p2)| (2.165)

× (2π)4δ(h(p1)+ h(p2)− h(p′1)− h(p′2)) δ3(p1 + p2 − p′1 − p′2)

× (ρ(r,p′1; t)ρ(r,p′2; t)(1− ρ(r,p; t))(1 − ρ(r,p2; t))
−ρ(r,p; t)ρ(r,p2; t)(1− ρ(r,p′1; t))(1− ρ(r,p′2s; t))

)
,

where (2.164) represents the selfconsistent Vlasov term while (2.165) describes the
on-shell collision term with a nonperturbative transition probability. We recall again
that the space-time coordinates (r, t) in Eq. (2.164) should be considered on a finite
grid in space-time �t�V that is sufficiently large to fulfill the assumptions and
approximations made in the derivation of the collision term.

2.5.2 Effective Parametrizations for the G-matrix

In practice the real part of the G-matrix in the nuclear physics context is
parametrized by some functional of the nuclear density ρ, e.g.

�(G(r1 − r2) ≈ −Aδ(r1 − r2)+ Bδ(r1 − r2)ρ((r1 + r2)/2))γ , (2.166)

where A and B denote the strength of the attractive and repulsive interaction and
0.3 ≤ γ ≤ 1 some density dependence of the repulsive interaction that controls
the incompressibility of nuclear matter. Spin and isospin dependencies have been
discarded as well as finite-range (Yukawa) interactions. A nonrelativistic mean field
(or selfenergy ) is obtained (as a function of the density ρ) by integration over ρ,

�eff (ρ) = Ueff (ρ) = 3

4

(
−Aρ + B

1+ γ ρ
1+γ
)
, (2.167)

where the prefactor 3/4 stems from subtracting the Fock part of the interaction from
the direct Hartree part in case of two spin and isospin degrees of freedom since
the local interaction (2.166) forbids interactions of particles with identical quantum
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numbers at the same position due to antisymmetry. The potential energy density V
is obtained by another integration over ρ:

V(ρ) = 3

4

(
−A

2
ρ2 + B

(1+ γ )(2+ γ )ρ
2+γ
)
. (2.168)

Alternatively, having fixed the potential energy density V e.g. by some effective
Lagrangian, the selfenergy is obtained by a (functional) derivative with respect to
the density ρ and the “local” effective interaction by another (functional) derivative.

Exercise 2.11: Calculate the nonrelativistic energy per nucleon for symmetric
nuclear matter at zero temperature as a function of the density ρ, i.e. the
nuclear equation of state (EoS), using the effective interaction (2.166) or
potential energy density (2.168), respectively.

2.5.3 Coupled-Channel Transport Equations

So far only elastic scattering between two fermions has been considered in the
transport equation (2.164) which holds well for energies below the first inelastic
threshold. In case of nucleons, however, the particles have some internal structure—
being a bound state of quarks and gluons as well as quark-antiquark pairs—and
have excited states of finite lifetime such as the�(1232) resonance or excited states
of even higher mass. Furthermore, with increasing energy of the collision strange-
antistrange quark pairs can be created from the nonperturbative vacuum of Quantum
Chromo Dynamics (QCD) which become bound in baryons of finite strangeness
such as the�’s, �’s, and�’s. The lowest energy states build up the baryon octet (of
spin 1/2 h̄), while first excited states are described by the baryon decuplet (of spin
3/2 h̄). Additional resonances of higher mass may be included without problems if
their experimental identification is sufficiently solid. On the other hand the mesonic
decays of the higher resonances to pions, kaons, etc. require to incorporate also the
pseudoscalar (0−) meson nonet as well as the vector meson nonet (1−).16

The form of the resulting transport equation is fixed by Eq. (2.98) where now
one has to include the discrete quantum numbers explicitly, i.e. the hadron type
h, spin projection σ , isospin τ , etc.; in short c := (h, σ, τ, . . .). Accordingly, the
phase-space distribution ρ(r,p; t) carries a discrete index c as well as the effective
single-particle Hamiltonian heff (r,p; t). The collision term, furthermore, becomes
a matrix in the channels c and c′ which describes the change of the phase-space
distribution ρc due to elastic (c ↔ c) or inelastic channels (c ↔ c′ �= c) obeying

16 Here the notation J p specifies the spin J and parity p of the state.



2.5 Including Higher Order Interactions 49

detailed balance. The summation over a specific state then translates to

∑
β

→
∑
σ,τ,···

∫
d3pβ

(2π)3
(2.169)

which replaces the single momentum integrals used so far. The matrix ele-
ment squared |GG†A|, which should be evaluated in a coupled-channel G-matrix
approach, then carries additional indices for the individual channels c1 + c2 ↔
c3 + c4. At least in case of particle production channels relativistic expressions for
the particle energies have to be incorporated in the energy conserving δ-function
which in case of vanishing selfenergies imply

Ekin = p2

2m
→ E =

√
p2 +m2. (2.170)

Furthermore, the antisymmetrization operator A for fermions has to be replaced
by a symmetrization operator S in case of mesons (bosons) and the Pauli-blocking
terms by Bose-enhancement factors, i.e.

(1− ρj (r,p; t))→ (1+ ηρj (r,p; t)) (2.171)

with η = 1 for bosons and η = −1 for fermions. This leads to the coupled-channel
VUU (CVUU) equations:

(
∂

∂t
+ ∇phceff (r, p1; t) · ∇r − ∇rhceff (r, p1; t) · ∇p

)
ρc(r, p1; t) (2.172)

=
∑
c′
Icc′ (r, p1; t) =

∑
c′

∑
c3,c4

∫
d3p2

(2π)3
d3p3

(2π)3
d3p4

(2π)3
(2.173)

× (2π)4δ4(p1 + p2 − p3 − p4) GG†
A,S (p1 + p2, p2 − p4; c1 + c2 ↔ c3 + c4)

× (ρc3(r, p3; t)ρc4(r, p4; t)ρ̄c(r, p1; t)ρ̄c′(r, p2; t)
−ρc(r, p1; t)ρc′ (r, p2; t)ρ̄c3(r, p3; t)ρ̄c4(r, p4; t))

with the Pauli-blocking or Bose-enhancement factors

ρ̄c(r,p; t) = 1+ ηρc(r,p; t). (2.174)

Here the relativistic four-momenta pj have to be incorporated in the δ4-function for
energy-momentum conservation in the transition process. Since coupled-channelG-
matrix calculations practically are restricted to a limited (small) number of particles
(or channels) the CVUU equations (2.172) in practice are limited to the low-
lying baryon resonances including part of the meson (0−) nonet. Furthermore,
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these equations lack Lorentz invariance and accordingly can only be applied to
nonrelativistic many-particle systems.

2.6 Numerical Solutions

The numerical solution of the VUU equation (2.164) consists in defining the local
cell size �V and time step �t which in case of low energy heavy-ion collisions is
usually taken to be �V = 1 fm3 and �t = 0.5 fm/c. The phase-space distribution
is taken in line with (2.96) as

ρt (r,p; t) = 1

Nt

N ·Nt∑
i=1

δ(r− ri (t)) δ(p− pi (t)), (2.175)

where N denotes the total number of nucleons and Nt the number of parallel
ensembles which should be of the order 300–1000. The propagation of the particles
in time follows the classical equations of motion for ṙi and ṗi , i.e.

ṙi = ∇pheff (ri ,pi; t) ; ṗi = −∇rheff (ri ,pi; t), (2.176)

with heff (r,p; t) = p2/(2m) + Ueff (r,p; t) while Ueff (r,p; t) is evaluated in
each space-time cell according to Eq. (2.167).

The solution of the equations of motion (2.176) is performed by a predictor-
corrector or Runge-Kutta method while different schemes exist for the calculation
of the gradients ∇rUeff (r,p; t) and ∇pUeff (r,p; t). For further details we refer
the reader to the original literature [15–23]. In order to avoid large numerical
fluctuations some Gaussian smoothing is often employed and adjusted to achieve
approximately stable nuclei in their semiclassical ground states taken in the local
Thomas-Fermi approximation (for spherical nuclei):

ρTF (r,p) = �(pF (r)2 − p2) (2.177)

for neutrons and protons (with two spin projections each). In (2.177) pF (r) denotes
the local Fermi momentum defined by

pF (r)
2 = 2m(EF − Ueff (r)) (2.178)

in the classically allowed regime with the Fermi energy EF (≈ 40 MeV).
It is useful to replace the attractive δ-force in Eq. (2.166) by some finite-range

Yukawa interaction of the same integrated strength

A =
∫
d3r

Â

μ|r| exp(−μ|r|) = 4πÂ

μ3 . (2.179)
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This complicates the calculation of the mean field Ueff (r; t) slightly but helps
in achieving rather stable nuclei with low fluctuations in the density during time
integration.

In order two simulate heavy-ion reactions the target and projectile nuclei are
shifted by some distance R in z-direction such that they do not touch. Furthermore,
both nuclei are shifted in x-direction by±b/2 where b denotes the impact parameter
of the collision. Then both nuclei are boosted towards each other (in z-direction)
in line with the bombarding energy of interest, however, including the Coulomb
repulsion at distance R as well as the Coulomb deflection in the x − z plane. This
completes the initialization.

Binary collisions in the time interval [t, t+�t] can be evaluated by Monte Carlo
via the collision criterion

bmax :=
√
σ(
√
s)

π
(2.180)

if the distance of closest approach of two particles di,jc is less than bmax and reached
in the time interval [t, t + �t]. In Eq. (2.180)

√
s denotes the invariant energy

of the collision, i.e. s = (E1 + E2)
2 − (p1 + p2)

2. If a collision may occur
between particles i and j according to the collision criterion (di,jc ≤ bmax) the
possible final states (allowed by energy-momentum conservation) are selected by
Monte Carlo in the common center-of-mass system and weighted by the angular
distribution dσ(

√
s)/d� and the final blocking factors. If a final state is selected

(and not blocked) the new particle momenta are boosted back to the calculational
frame. Some note of caution has to be added here since one has to take care that the
collision probability for each particle i—summed over all particles j in the same
ensemble—in the time step �t is significantly lower than 1 in order not to miss
collisions. Furthermore, the total energy-momentum conservation has to be recorded
and controlled in time. Deviations by less than 1% are commonly accepted.

2.6.1 Application to Low Energy Heavy-Ion Reactions

In order to illustrate the effect of the collision term in the VUU equation (2.164)
Fig. 2.6 shows the density distribution ρ(x, y = 0, z; t) for a central collision of
40Ca +40 Ca at a beam energy of 40 MeV/u in the semiclassical limit according
to the VUU/BUU equation (2.164). Contrary to the corresponding solution of
the Vlasov equation (cf. Fig. 2.3) the nuclei do not pass through each other but
merge for longer times t emitting some nucleons to the continuum. Accordingly the
stopping power of the collision is essentially controlled by the strength of the binary
scattering that is missing in the TDHF or Vlasov solutions.

Furthermore, the middle column of Fig. 2.6 shows the momentum distribution
ρ(px, py = 0, pz; t) for the same system which at t = 0 is elongated in pz-direction
due to the initial boosts but becomes isotropic in time due to the two-body collisions
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Fig. 2.6 (Left column) The density distribution ρ(x, y = 0, z; t) for a central collision of
40Ca +40 Ca at a beam energy of 40 MeV/u in the semiclassical limit according to the BUU
equation (2.93) within the testparticle method (2.96). (Middle column) The momentum distribution
ρ(px, py = 0, pz; t) for the same reaction. (Right column) The phase-space distribution
f̄ (z, pz; t)—integrated over perpendicular degrees of freedom—for the same reaction



Solution of Exercises 53

since the systems fuses to a single system of mass A < 80 while nucleons are
emitted to the continuum during the equilibration process.

2.6.2 Summary

The VUU/BUU transport equation for fermions has been derived from the BBGKY
hierarchy in the perturbative and nonperturbative limits for systems of sufficient size
and/or particle number such that averages over space-time volumes still provide
a reasonable resolution in space and time. Furthermore, the testparticle method
provides a convenient scheme to solve the transport equations in the limit of
large ensemble numbers Nt . Apart from elastic scattering of particles also inelastic
reactions can be treated on the same footing by a Monte Carlo evaluation of the
respective collision integrals.

As mentioned before the VUU/BUU equation (2.164) is nonrelativistic and
studies at higher bombarding energies require a covariant formulation such that
the results of actual calculations (for Lorentz-invariant observables) do not depend
on the reference frame adopted, being either the laboratory frame, the nucleus-
nucleus center-of-mass or the nucleon-nucleon center-of-mass. It is straight forward
to employ relativistic kinematics which means to replace the velocities by their
relativistic counterparts,

p
M
→ p
E
,

|p1 − p2|
M

→
∣∣∣∣ p1

E1
− p2

E2

∣∣∣∣ , (2.181)

in the nucleon-nucleon center-of-mass frame, however, the effective mean-field
potential essentially depends on the nuclear density ρ, which is not a Lorentz-
invariant quantity but the zeroth component of a four-vector. Accordingly, a
covariant formulation of the dynamics is required with a clean specification of
the transformation properties for the selfenergies as well as matrix elements in the
collision term.

Solution of Exercises

Exercise 2.1: Prove Eq. (2.26) starting from (2.23).

Equation (2.23) defines the normalization

T r(1,...,N) ρN = N ! (2.182)
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for arbitrary N , while the recursion relation reads

ρn = 1

(N − n)!T r(n+1,...,N)ρN . (2.183)

Taking the trace T r(1,...,n)ρn we have

T r(1,...,n)ρn = 1

(N − n)!T r(1,...,N)ρN =
N !

(N − n)! = N(N−1)(N−2) . . . (N−n+1),

which proves Eq. (2.26).

Exercise 2.2: Show that solutions of the TDHF equation

i
∂

∂t
ψα(r; t)

=
⎛
⎝− 1

2m
∇r · ∇r +

∑
β

∫
d3r2 ψ

∗
β(r2; t)v(r− r2)ψβ(r2; t)nβ

⎞
⎠ψα(r; t)

−
∑
β

∫
d3r2 ψ

∗
β(r2; t)v(r− r2)ψβ(r; t)ψα(r2; t)nβ,

where nβ denote time-independent occupation numbers with N = ∑β nβ ,
provide a solution for Eq. (2.35) with ρ(1, 1′; t) given by

ρ(1, 1′; t) = ρ(r, r′; t) =
∑
α

nαψ
∗
α(r
′; t)ψα(r; t).

The Hermitian conjugate TDHF equation reads

−i ∂
∂t
ψ∗α(r; t) =

⎛
⎝− 1

2m
∇r · ∇r +

∑
β

∫
d3r2 ψβ(r2; t)v(r − r2)ψ

∗
β(r2; t)nβ

⎞
⎠

× ψ∗α(r; t)

−
∑
β

∫
d3r2 ψβ(r2; t)v(r − r2)ψ

∗
β(r; t)ψ∗α(r2; t)nβ = hHFψ∗α(r; t)

(2.184)
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and the time derivative of ρ(r, r′; t) then gives

i
∂

∂t
ρ(r, r′; t) = i ∂

∂t

∑
α

nαψ
∗
α(r
′; t)ψα(r; t)

= i
∑
α

nα

[(
∂

∂t
ψ∗α(r′; t)

)
ψα(r; t) + ψ∗α(r′; t)

(
∂

∂t
ψα(r; t)

)]
(2.185)

= −
∑
α

nαψα(r; t)

×
⎡
⎣
⎛
⎝− 1

2m
∇r ′ · ∇r ′ +

∑
β

nβ

∫
d3r2 ψβ(r2; t)v(r′ − r2)ψ

∗
β(r2; t)

⎞
⎠ψ∗α(r′; t)

+
∑
β

nβ

∫
d3r2 ψβ(r2; t)v(r′ − r2)ψ

∗
β(r
′; t)ψ∗α(r2; t)

⎤
⎦

+
∑
α

nαψ
∗
α(r
′; t)

×
⎡
⎣
⎛
⎝− 1

2m
∇r · ∇r +

∑
β

nβ

∫
d3r2 ψβ(r2; t)v(r − r2)ψ

∗
β(r2; t)

⎞
⎠ψ∗α(r; t)

−
∑
β

nβψ
∗
α(r2; t)

∫
d3r2 ψβ(r2; t)v(r − r2)ψ

∗
β(r; t)ψ∗α(r2; t)

⎤
⎦ = 0

since hHF is Hermitian.

Exercise 2.3: Prove Eq. (2.53) for the expansions (2.51) and (2.52).

We have to show that (2.45)

i
∂

∂t
ρ(11′; t) = [h(1)− h(1′)]ρ(11′; t)+ Tr(2=2′)[v(12)− v(1′2′)]c2(12, 1′2′; t)

(2.186)
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gives (2.53). Inserting the expansions (2.51) and (2.52) we obtain

i
∂

∂t

∑
λλ′
ρλλ′(t) ϕλ(r1)ϕ

∗
λ′(r

′
1) = [h(r1)− h(r′1)]

∑
λλ′
ρλλ′(t) ϕλ(r)ϕ

∗
λ′(r

′)

(2.187)

+
∫
d3r2 [v(r1 − r2)− v(r′1 − r2)]

∑
λγ λ′γ ′

Cλγλ′γ ′(t) ϕλ(r1)ϕγ (r2)ϕ
∗
λ′ (r

′
1)ϕ
∗
γ ′(r2).

We now multiply from the left with ϕ∗α(r1)ϕα′(r1′) and integrate over d3r1d
3r1′ ,

i
∂

∂t

∑
λλ′

∫
d3r1

∫
d3r1′ ϕ

∗
α(r1)ϕα′ (r1′ )ρλλ′(t) ϕλ(r1)ϕ

∗
λ′ (r

′
1)

= i ∂
∂t

∑
λλ′
ρλλ′(t)δαλ δα′λ′ (2.188)

= i ∂
∂t
ραα′ (t) =

∫
d3r1

∫
d3r1′ ϕ

∗
α(r1)ϕα′ (r1′)[h(r1; t) − h(r′1; t)]

×
∑
λλ′
ρλλ′(t) ϕλ(r1)ϕ

∗
λ′ (r

′
1)

+
∑
λγ λ′γ ′

∫
d3r1

∫
d3r1′ ϕ

∗
α(r1)ϕα′ (r1′)

∫
d3r2[v(r1 − r2)− v(r′1 − r2)]Cλγλ′γ ′(t)

× ϕλ(r1)ϕγ (r2)ϕ
∗
λ′(r

′
1)ϕ
∗
γ ′(r2).

Defining

hαλ = 〈α|h|λ〉 =
∫
d3r1 ϕ

∗
α(r1) h(r1) ϕλ(r1) (2.189)

and

〈αβ|v|λγ 〉 =
∫
d3r1

∫
d3r2 ϕ

∗
α(r1)ϕ

∗
β(r2) v(r1 − r2) ϕλ(r1)ϕγ (r2) (2.190)

we arrive at

i
∂

∂t
ραα′(t) =

∑
λλ′
δλ′α′hαλρλλ′(t)−

∑
λλ′
δαλhλ′α′ρλλ′(t) (2.191)

+
∑
λγ λ′γ ′

(
δα′λ′ 〈αγ ′|v|λγ 〉Cλγλ′γ ′(t) − δαλ〈λ′γ ′|v|α′γ 〉Cλγλ′γ ′(t)

)
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=
∑
λ

[hαλρλα′(t)− ραλhλα′ ]

+
∑
β

∑
λγ

{〈αβ|v|λγ 〉Cλγα′β(t)− Cαβλγ (t)〈λγ |v|α′β〉}

after redefining the summation indices. In shorthand form we thus may also write

i
∂

∂t
ραα′(t) = [h, ρ]αα′ +

∑
β

{〈αβ|vC − Cv|α′β〉}. (2.192)

Exercise 2.4: The ground state wavefunction of a three-dimensional oscilla-
tor is given by a Gaussian

ψ(r) = N0 exp(−r · r/(2b2)).

Calculate the normalization factor N0 and the Wigner transform of
ψ∗(r′)ψ(r). What is the value at the origin? Does the interpretation of a
classical phase-space distribution hold?

The three-dimensional gaussian wavefunction in cartesian coordinates can be
considered as a product of three gaussians in x, y, z-direction each with normal-
ization factor N1/3

0 . The normalization in each direction is obtained from

N
2/3
0

∫ ∞
−∞
dx exp(−x2/b2) = N2/3

0

√
πb = 1, (2.193)

i.e. N0 = 1/(
√
πb)3/2.

For the Wigner transformation we have to compute the following one-
dimensional integral (including h̄ explicitly for the exercise)

f (r, p) =
∫ ∞
−∞
ds ρ(r + s/2, r − s/2) exp

(
− i
h̄
ps

)
(2.194)

= 1√
πb

∫ ∞
−∞
ds exp

(
−x

2 + x ′2
2b2

)
exp

(
− i
h̄
ps

)
,

since the problem reduces to a product of three independent one-dimensional
integrals. First we evaluate

x2+x ′2 = (r+ s/2)2+ (r− s/2)2 = r2+ rs+ s2/4+ r2− rs+ s2/4 = 2r2+ s2/2.
(2.195)
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This leads to

f (r, p) = 1√
πb

exp

(
− r

2

b2

)∫ ∞
−∞
ds exp

(
− s

2

4b2

)
exp

(
− i
h̄
ps

)
. (2.196)

We rewrite the (negative) argument of the exponent by introducing ξ = i
h̄
p2b2, i.e.

s2

4b2 +
i

h̄
ps = s

2 + 2sξ + ξ2 − ξ2

4b2 = (s + ξ)
2 − ξ2

4b2 , (2.197)

which gives

f (r, p) = 1√
πb

exp

(
− r

2

b2

)
exp

(
ξ2

4b2

)∫ ∞
−∞
ds exp

(
− (s + ξ)

2

4b2

)
. (2.198)

With ξ2/(4b2) = −p2b2/h̄2 and η = (s + ξ)/(2b) we arrive at

f (r, p) = 1√
πb

exp

(
− r

2

b2

)
exp

(
−p

2b2

h̄2

)
2b
∫ ∞
−∞
dη exp(−η2). (2.199)

The integral over dη gives
√
π and we finally obtain

f (r,p) = 1√
πb

exp

(
− r

2

b2

)
exp

(
−p

2b2

h̄2

)
2b
√
π = 2 exp

(
− r

2

b2

)
exp

(
−p

2b2

h̄2

)
.

(2.200)

In three dimensions we thus obtain the product

f (r,p) = 23 exp
(
−r · r
b2

)
exp

(
−p · pb

2

h̄2

)
= 8 exp

(
− r2

b2 −
p2b2

h̄2

)
.

(2.201)

For r = 0,p = 0 we get

f (r = 0,p = 0) = 8,

which indicates that the Wigner transform of a wavefunction cannot be identified
with the local occupation probability in phase space, i.e. the probability to find a
particle with momentum p at position r. Only when averaging over a phase-space
volume �r �p ≥ h̄/2 in all three dimensions a classical “occupation probability”
emerges.
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Exercise 2.5: Show that

�∇2
x − �∇2

x ′ = �∇2
r+s/2 − �∇2

r−s/2 = 2 �∇s · �∇r,

where x = r+ s/2, x′ = r− s/2.
What is the Wigner transform of �∇s · �∇r ρ(r+ s/2, r− s/2) when assuming
that ρ(r, s) vanishes at si →±∞ for i = x, y, z?

We have (i = 1, 2, 3)

∂

∂xi
= ∂

∂ri

∂ri

∂xi
+ ∂

∂si

∂si

∂xi
= 1

2

∂

∂ri
+ ∂

∂si
, (2.202)

∂

∂x ′i
= ∂

∂ri

∂ri

∂x ′i
+ ∂

∂si

∂si

∂x ′i
= 1

2

∂

∂ri
− ∂

∂si
.

This leads to

�∇2
x − �∇2

x ′ = �∇2
r+s/2 − �∇2

r−s/2 =
3∑
i=1

((
1

2

∂

∂ri
+ ∂

∂si

)2

−
(

1

2

∂

∂ri
− ∂

∂si

)2
)

(2.203)

=
3∑
i=1

(
1

4

∂2

∂r2
i

+ ∂

∂ri

∂

∂si
+ ∂2

∂s2
i

− 1

4

∂2

∂r2
i

+ ∂

∂ri

∂

∂si
− ∂2

∂s2
i

)
= 2 �∇r · �∇s.

The Wigner transform of �∇s · �∇rρ(r+ s/2, r− s/2) is given by

IW (p) =
∫
d3s exp

(
− i
h̄

p · s
)
�∇s · �∇r ρ(r+ s/2, r− s/2) (2.204)

= �∇r ·
∫
d3s exp

(
− i
h̄

p · s
)
�∇sρ(r+ s/2, r− s/2).

Use that

d

dx
[f (x)g(x)] = f (x)dg(x)

dx
+ g(x)df (x)

dx
.
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Then

�∇s

(
exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2)

)
(2.205)

= exp

(
− i
h̄

p · s
)
�∇s ρ(r+ s/2, r− s/2)

+ ρ(r+ s/2, r− s/2) �∇s exp

(
− i
h̄

p · s
)
.

Since

�∇s exp

(
− i
h̄

p · s
)
= − i

h̄
p exp

(
− i
h̄

p · s
)
, (2.206)

we obtain that

exp

(
− i
h̄

p · s
)
�∇s ρ(r+ s/2, r− s/2) (2.207)

= �∇s

(
exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2)

)

+ i
h̄

p exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2).

Substitute (2.207) to Eq. (2.204):

IW (q) = �∇r ·
∫
d3s �∇s

(
exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2)

)
(2.208)

−�∇r ·
∫
d3s

(
�∇s exp

(
− i
h̄

p · s
))

ρ(r+ s/2, r− s/2).

The first term in (2.208) is vanishing in the limits of partial integration since
ρ(r, s)→ 0 when si →±∞ for all components i = 1, 2, 3:

∫
d3s �∇s

(
exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2)

)
→ 0 (2.209)

since

∫ ∞
−∞
dsi

∂

∂si

(
exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2)

)

→ exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2)

∣∣si→∞
si→−∞ → 0. (2.210)



Solution of Exercises 61

Thus,

IW (q) = −�∇r ·
∫
d3s

(
− i
h̄

p
)

exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2) (2.211)

= i
h̄

p · �∇r

∫
d3s exp

(
− i
h̄

p · s
)
ρ(r+ s/2, r− s/2)

= i
h̄

p · �∇rf (r,p).

Exercise 2.6: Show that for real ω0 and ε > 0

∫ ∞
−∞

dω

2π

1

ω − ω0 ∓ iε = ±i.

For ε > 0 the integrand has a pole in the upper half plane for the minus sign in front
of the iε at ω0+ iε. In this case we can close the integration contour by a semicircle
in the upper half plane since the integrand vanishes on the semicircle. Now applying
the residue theorem we have

∫ ∞
−∞

dω

2π

1

ω − ω0 − iε =
∮
dω

2π

1

ω − ω0 − iε = 2πi
1

2π
= i. (2.212)

In case of a plus sign in front of the iε the pole is in the lower half plane and we
close the integration contour by a semicircle in the lower half plane which gives a
relative minus sign due to the different orientation.

Another important relation is

i

∫ ∞
−∞

dω

2π

exp(−iωt)
ω + iε = i

∮
dω

2π

exp(−iωt)
ω + iε = �(t), (2.213)

i.e. the Heaviside unit step-function (after integration over the lower plane).

Exercise 2.7: Calculate the Fourier transform of the Yukawa interaction
(with μ > 0)

v(r) = V0
exp(−μ|r|)
|r| .

What is the range of the interaction and the scattering amplitude in Born
approximation?
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The Fourier transform is given by

v(p) = V0

∫
d3r exp(−ip · r) exp(−μ|r|)

|r|

= 2πV0

∫ ∞
0
dr

∫ 1

−1
dξ r exp(−ipξr) exp(−μr)

= 2πV0

∫ ∞
0
dr

1

ip
(exp(ipr)− exp(−ipr)) exp(−μr)

= V02π

ip

∫ ∞
0
dr (exp((ip − μ)r)− exp(−(ip+ μ)r))

= 2πV0

ip

( −1

ip − μ +
−1

ip + μ
)
= 2πV0

2ip

ip

1

p2 + μ2
= 4πV0

p2 + μ2
.

(2.214)

The range of the Yukawa interaction is 1/μ. In Born approximation the scattering
amplitude is

f (p) = − 1

4π
v(p) = − V0

p2 + μ2 , (2.215)

where p denotes the momentum transfer in the reaction.

Exercise 2.8: Derive Eq. (2.126) starting from (2.122) using (2.123).

We start with the collision integral in the form

I (p1,p1; t) = d
∫
d3p2

(2π)3
d3p3

(2π)3
d3p4

(2π)3
(2.216)

× 2πδ

(
1

2m
[p2

1 + p2
2 − p2

3 − p2
4]
)

× (2π)3δ3(p1 + p2 − p3 − p4) v(p2 − p4)vA(p4 − p2)

× (n(p3; t)n(p4; t)n̄(p1; t)n̄(p2; t)− n(p1; t)n(p2; t)n̄(p3; t)n̄(p4; t))

and introduce total and relative momenta in the initial and final channels as

Pin = p1 + p2, Pout = p3 + p4, (2.217)

qin = p1 − p2

2
, qout = p3 − p4

2
.
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Now we can rewrite

Iout :=
∫
d3p3

(2π)3

∫
d3p4 2πδ

(
1

2m
[p2

1 + p2
2 − p2

3 − p2
4]
)

× δ3(p1 + p2 − p3 − p4) v(p2 − p4)vA(p4 − p2)

=
∫
d3Pout

∫
d3qout

(2π)3
2πδ

(
1

2m
[P 2
in/2+ 2q2

in − P 2
out/2− 2q2

out]
)

× δ3(Pin − Pout ) v(p2 − p4)vA(p4 − p2)

=
∫
d3qout

(2π)2
δ

(
1

m
[q2
in − q2

out ]
)
v(p2 − p4)vA(p4 − p2). (2.218)

Changing to spherical coordinates for qout we get

Iout =
∫
d�

∫
dqout

(2π)2
q2
out

(
1

m
[q2
in − q2

out ]
)
v(p2 − p4)vA(p4 − p2)

= 1

4π2

∫
d�

mqin

2
v(p2 − p4)vA(p4 − p2). (2.219)

Now using (in Born approximation) relation (2.123), i.e.

16π2

m2

dσ

d�
(p1 + p2,p2 − p4) = v(p2 − p4)vA(p4 − p2), (2.220)

we obtain

Iout =
∫
d�

1

4π2

mqin

2

16π2

m2

dσ

d�
(p1 + p2,p2 − p4) (2.221)

=
∫
d�

2qin
m

dσ

d�
(p1 + p2,p2 − p4) =

∫
d� v12

dσ

d�
(p1 + p2,p2 − p4)

with the relative velocity

v12 = 2qin
m
= |p1 − p2|

m
, (2.222)

which gives Eq. (2.126), i.e.

I (p1,p1; t) = d
∫
d3p2

(2π)3

∫
d� v12

dσ

d�
(p1 + p2,p2 − p4) (2.223)

× {n(p3; t)n(p4; t)n̄(p1; t)n̄(p2; t)− n(p1; t)n(p2; t)n̄(p3; t)n̄(p4; t)}.
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Exercise 2.9: Show that the Fermi distribution (2.127) is a stationary solu-
tion of the collision term, i.e. fulfills Eq. (2.128).

We have to show that I (p1,p1; t) = 0 in case of n = nF (ε) = nF (p2/(2m)). It
is sufficient to show that

n(p3)n(p4)n̄(p1)n̄(p2) = n(p1)n(p2)n̄(p3)n̄(p4), (2.224)

if n = nF (ε). To this aim we write

1− nF (ε) = 1− 1

1+ exp((ε − μ)/T ) =
1− (1+ exp((ε − μ)/T )

1+ exp((ε − μ)/T )
= − exp((ε − μ)/T )

1+ exp((ε − μ)/T ) . (2.225)

We then have

exp((ε1 − μ)/T )
(1+ exp((ε1 − μ)/T ))

exp((ε2 − μ)/T )
(1+ exp((ε2 − μ)/T ))

× 1

(1+ exp((ε3 − μ)/T ))
1

(1+ exp((ε4 − μ)/T ))
= exp((ε3 − μ)/T )
(1+ exp((ε3 − μ)/T ))

exp((ε4 − μ)/T )
(1+ exp((ε4 − μ)/T ))

× 1

(1+ exp((ε1 − μ)/T ))
1

(1+ exp((ε2 − μ)/T ))
Since the denominators on both sides are the same one has to proof only

exp((ε1 − μ)/T ) exp((ε2 − μ)/T ) = exp((ε3 − μ)/T ) exp((ε4 − μ)/T ).
(2.226)

The common factor exp(−2μ/T ) on both sides cancels out and we have

exp(ε1/T ) exp(ε2/T ) = exp(ε3/T ) exp(ε4/T ) (2.227)

or

exp((ε1 + ε2)/T ) = exp((ε3 + ε4)/T ). (2.228)

Since due to energy conservation δ(ε1 + ε2 − ε3 − ε4) we have ε1 + ε2 = ε3 + ε4;
this proves that nF (ε) is a stationary solution.
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Exercise 2.10: Prove the operator identity [A + B]−1 = A−1(1 − B[A +
B]−1).

By multiplication of the identity by [A + B] from the right on both sides we
obtain

1 = [A+ B]−1[A+ B] = A−1(1− B[A+ B]−1)[A+ B]
= A−1[A+ B] − A−1B[A+ B]−1[A+ B]

= A−1A+ A−1B − A−1B · 1 = A−1A = 1, (2.229)

which proves the identity. The familiar Dyson equation emerges by setting A =
(ω − h(1)− h(2)± iγ ) and B = −v.

Exercise 2.11: Calculate the nonrelativistic energy per nucleon for symmet-
ric nuclear matter at zero temperature as a function of the density, i.e. the
nuclear equation of state, using the effective interaction (2.166) or potential
energy density (2.168), respectively.

For symmetric nuclear matter at zero temperature the nuclear density is given by

ρ = d

(2π)3
4π
∫ pF

0
dp p2 = d

6π2p
3
F (2.230)

with the degeneracy d = 4 for given Fermi momentum pF . Alternatively we may
replace pF by

pF =
(

6π2

d
ρ

)1/3

=
(

3π2

2
ρ

)1/3

. (2.231)

The kinetic energy density is given by

Ekin = d

(2π)3
4π
∫ pF

0
dp p2 p

2

2m
= d

20mπ2 p
5
F =

1

5mπ2 p
5
F =

1

5mπ2

(
3π2

2
ρ

)5/3

= 3

10m

(
3

2

)2/3

π4/3 ρ5/3 =: C ρ5/3. (2.232)
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The total energy density then is given by adding the potential energy density (2.168),

E(ρ) = C ρ5/3 + 3

4

(
−A

2
ρ2 + B

(1+ γ )(2+ γ )ρ
2+γ
)
, (2.233)

and the energy per nucleon is obtained (dividing by ρ) as,

E

N
(ρ) = C ρ2/3 + 3

4

(
−A

2
ρ + B

(1+ γ )(2+ γ )ρ
1+γ
)
. (2.234)

The parameters A,B, γ have to be fixed by the boundary conditions

d

dρ

E

N
(ρ)|ρ0

= 2C

3
ρ
−1/3
0 + 3

4

(
−A

2
+ B

(1+ γ )ρ
γ

0

)
= 0 (2.235)

for a minimum at saturation density ρ = ρ0, and

E

N
(ρ0) = C ρ2/3

0 + 3

4

(
−A

2
ρ0 + B

(1+ γ )(2+ γ )ρ
1+γ
0

)
= −16 MeV (2.236)

at ρ0 ≈ 1/6 fm−3 as well as by the incompressibility

K = 9ρ2
0
d2

dρ2

E

N
|ρ0
= −9ρ2

0
2C

9
ρ
−4/3
0 + 9ρ2

0
3B

4

γ

2+ γ ρ
γ−1
0

= −2Cρ2/3
0 + 27B

4

γ

2+ γ ρ
1+γ
0 , (2.237)

which fixes the parameter γ . The incompressibility K is not so well known but
in the range of 200–400 MeV. In practice one chooses some value for γ in the
interval [0.3, 1] and solves for the parameters A and B which gives a unique
incompressibilityK(γ ).
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3Relativistic On-Shell Kinetic Theories

As mentioned in the previous chapter a covariant transport theory requires a proper
relativistic formulation of the particle dynamics which is based on the Dirac
equation for fermions (of spin 1/2h̄) and the Klein-Gordon (or Proca) equation
for the bosons. In the nuclear physics context a commonly used (and flexible)
scheme is given by the Lagrangian of the isospin symmetric Quantum-Hadro-
Dynamics (QHD) which consists of the free Dirac Lagrangian for the nucleons, the
Lagrangian for a scalar field σ(x) and a vector field ωμ(x) with self-interactions
and an interaction part between bosons and fermions of Yukawa type (in the
stationary limit) [1, 2]. As pointed out in Appendix H the QHD model should
be considered as an effective approach on the mean-field level that approximates
the selfenergies provided by relativistic Dirac-Brueckner theory [3–5]. A reminder
and short survey of quantum-hadro-dynamics is given in Appendix H as well as a
proof of thermodynamic consistency. This is mandatory for transport theory since a
system initially out-of equilibrium asymptotically (for t → ∞) has to provide the
correct equilibrium distribution functions (for localized systems).

In this chapter we will thus formulate covariant transport equations for fermions
and bosons, introduce an alternative method for the solution of the covariant
collision terms and illustrate solutions in case of heavy-ion collisions at 1 A GeV.
Since multi-particle interactions become important for high particle densities—as
achieved in relativistic heavy-ion reactions—a covariant formulation of multi-
particle (n ↔ m) collisions becomes mandatory which fulfills detailed balance.
This task will be addressed in Sect. 3.2 and a suitable solution scheme be pointed
out. As an illustration we consider the problem of baryon+antibaryon annihilation
into a couple of mesons (B + B̄ ↔ 3− 7π ′s).
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3.1 Covariant Transport Equations

We here will base the formulation on the QHD approach which is presented in detail
in Appendix H. The QHD approach is an extension of the relativistic mean-field
theory proposed first by Serot and Walecka [6–8] and early covariant formulations
of Vlasov dynamics in Ref. [9] have been based on the Walecka model as well.
Since the coupled field equations (H.7), (H.8) and (H.9) for the nucleon, σ -field and
ω-field are somewhat difficult to evaluate on the quantum level, the meson fields
are approximated by their expectation values and given by complex values as a
function of the nucleon scalar density ρs(x) or four-current jμ(x). Furthermore, one
applies a local-density approximation (LDA) for the meson fields which implies to
neglect space-time derivatives for the meson fields σ(x) and ωμ(x). As shown in
Appendix H one can rearrange the equation of motion for the nucleons with spinor
� and write it in the form of the free Dirac equation as

(
γμ
(
i∂μ − �μ(x))− (M −�s(x)))�(x) = 0 . (3.1)

In (3.1) �s(x) is the scalar selfenergy and modifies the mass while �μ(x) is
the vector selfenergy that modifies the four-momentum of the nucleons in space
and time. Since the derivation of relativistic transport equations formally does not
depend on the explicit self-couplings of the meson fields we will discard density-
dependent couplings in the following as well as self-interactions of the vector field
ωμ(x), i.e.

�s(x) = gs σ (x) (3.2)

with a coupling strength gs to the scalar field σ and

�μ(x) = gv ωμ(x) = g2
v

m2
ω

jμ(x), (3.3)

where jμ(x) denotes the baryon four-current, gv some effective vector coupling and
mω ≈ 0.785 GeV the mass of the ω meson. Note that the four-current jμ(x) fulfills
a continuity equation

3∑
μ=0

∂μj
μ(x) = 0 (3.4)

and that the spatial integral of j0

B =
∫
d3x j0(x) (3.5)
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gives the conserved baryon number B. This implies that excited states of the
nucleons have to be included in the calculation of the four-current.

Eq. (3.1) can be rewritten (in momentum space) as

(
γμ 

μ −M∗)�(x) = 0, (3.6)

with the effective four-momentum μ and effective massM∗ defined by

 μ = pμ −�μ, M∗ =M −�s. (3.7)

The equations for positive and negative energy eigenstates read

(
γ μ μ −M∗

)
u∗r ( ,M∗) = 0,

(
γ μ μ +M∗

)
v∗r ( ,M∗) = 0 (3.8)

with u∗r ( ,M∗) as the effective spinor for particles and v∗r ( ,M∗) as the effective
spinor for antiparticles (with spin r = ± or r=1,2). The Dirac equation then leads
to the mass-shell condition

 μ μ −M∗2 = 0. (3.9)

The effective spinors are obtained by replacing the mass and the energy with their
effective values in the free Dirac spinors ur(p) and vr(p) and fulfill the relations,1

ū∗r ( )u∗s ( ) = δrs = −v̄∗r ( )v∗s ( ),

ū∗s ( )γ μu∗s ( ) = v̄∗s ( )γ μv∗s ( ) =
 μ

M∗
. (3.10)

The normalization (3.10) implies that u∗†s ( )u∗s ( ) = ū∗s ( )γ 0u∗s ( ) =  0/M∗,
which enters the density, carries an additional factor  0/M∗ as compared to the
nonrelativistic case.

The single-particle energies for positive and negative frequencies read in line
with (3.7)

ε+(p) = √ 2 +M∗2 +�0, (3.11)

ε−(p) = −√ 2 +M∗2 +�0 . (3.12)

1 cf. Appendix G—in the normalization of Bjorken and Drell [10].
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In general the field operator �(x) and the Pauli conjugated operator �̄(x) can be
expanded in terms of plane waves and effective spinors as2

�(x) =
∫

d3 

(2π)3/2
M∗

E∗p
×

2∑
r=1

[cr( )ur( ,M∗) exp(−i(ε+(p)t − p · x))

+ d†
r ( )vr( ,M

∗) exp(i(ε−(p)t − p · x))], (3.13)

�̄(x) =
∫

d3 

(2π)3/2
M∗

E∗p
×

2∑
r=1

[c†
r ( )ūr( ,M

∗) exp(+i(ε+(p)t − p · x))

+ dr( )v̄r ( ,M∗) exp(−i(ε−(p)t − p · x))], (3.14)

with E∗p =
√
 2 +M∗2 = √(p−�)2 +M∗2. In Eqs. (3.13), (3.14) the operators

c
†
r , cr and d†

r , dr denote creation and annihilation operators for particles and
antiparticles, respectively, following the anti-commutator relations

{cr( ), c†
s ( 

′)} = {dr( ), d†
s ( 

′)} = E
∗
p

M∗
δrs δ

3( − ′), (3.15)

while all other anti-commutators vanish,

{cr ( ), cs( ′)} = {dr( ), ds( ′)} = {c†
r ( ), c

†
s ( 

′)} = {d†
r ( ), d

†
s ( 

′)} = 0,
(3.16)

as well as the mixed anti-commutators between c, c†− and d, d†−operators. We
recall that the particle number operator for quasiparticles with momentum  and
spin projection r is given by

Nr( ) = M
∗

E∗p
c†
r ( )cr( ). (3.17)

Eqs. (3.11), (3.13), (3.14), and (3.17) allow to calculate the quasiparticle density
and the scalar density as expectation values of normal ordered operators which read

2 Assuming homogenous media in a local volume of sufficient size.
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for spin and isospin symmetric media,3

ρN(x) = 2〈: �̄γ 0� :〉 = d
∫
d3 

(2π)3

(
f ∗p (x, )− f ∗a (x, )

)
, (3.18)

ρs(x) = 2〈: �̄� :〉 = d
∫
d3 

(2π)3
M∗(x)
E∗p

(
f ∗p (x, )+ f ∗a (x, )

)
, (3.19)

with the degeneracy factor d = 4 for nucleons. The functions fp and fa
are the “space-time local” distribution functions for fermionic quasiparticles and
antiparticles, respectively.

Exercise 3.1: Prove the expressions (3.18) and (3.19).

The equation for the σ field,

∂U(σ(x))

∂σ
= gs ρs(x), (3.20)

has to be solved selfconsistently with Eq. (3.19) since ρs depends again onM∗. The
quantity U(σ) contains the mass term for the σ field as well as self-interactions of
third and fourth order,

U(σ) = 1

2
m2
σ σ

2 + 1

3
Bσ 3 + 1

4
Cσ 4 (3.21)

with mσ ≈ 0.55 GeV denoting the mass of the σ field. Eq. (3.20) then turns to

m2
σσ (x)+ Bσ 2(x)+ Cσ 3(x) = gsρs(x) (3.22)

that has to be solved by iteration on a space-time grid for each space-time cell. The
solution of the “gap equation” (3.22) is the extra price to pay for covariant dynamics
as compared to the nonrelativistic dynamics.

The further derivation of an on-shell transport approach in principle proceeds as
in case of nonrelativistic dynamics when replacing the single-particle Schrödinger
equation (multiplied by twice the bare mass 2M) with the Dirac equation:

i2M
∂

∂t
�(x)−

(
p2+2MUeff (x)

)
ψ(x) = 0→ (

γ μ
(
i∂μ−�μ(x)

)− (M −�s(x))) �̂(x) = 0.

(3.23)

3 With a factor of 2 for the sum over isospin.



74 3 Relativistic On-Shell Kinetic Theories

Whereas ψ(x) in the nonrelativistic case is a scalar wavefunction (or two-
component Pauli-spinor) we have a spinor-field operator �̂(x) (with four compo-
nents) in the relativistic case. In the following we will neglect antiparticles, i.e.
we drop the terms ∼ dr , d†

r in (3.13) and (3.14). This is legitimate for heavy-ion
collisions up to at least 2 A GeV since the production of nucleon-antinucleon pairs
is below threshold.

3.1.1 Wigner Transformation and Gradient Expansion

A one-body (4×4) vector density matrix then is defined by

ρ(x, x ′)μαβ =
∑
λ

〈: �̄β(x ′)γ μαλ�λ(x) :〉, (3.24)

where α, β denote Dirac indices. When taking the trace over the Dirac indices
and using (3.10) the diagonal matrix elements (x = x ′) give the four-current of
quasiparticles summed over spin projection r . On the other hand, when replacing
γ μ in (3.24) by the unit matrix, i.e.

〈: �̄β(x ′)�α(x) :〉 = ρs(x, x ′)αβ, (3.25)

and taking the trace over the Dirac indices, the diagonal elements (x = x ′) give the
scalar density of quasiparticles summed over the spin projections r . While (3.24)
transforms as a Lorentz four-vector (3.25) transforms as a Lorentz-scalar. In order
to keep the further formulation transparent we consider spin-saturated systems and
consequently may average over the spin degrees of freedom such that the spin
indices may be dropped as in the nonrelativistic case discussed in Chap. 2.

The next step is to perform a four-dimensional Wigner transformation of (3.24),
e.g. for ρ0:

F̃ (x, p)αβ =
∫
d4s exp(ipμsμ) ρ0

(
x + s

2
, x − s

2

)
αβ
, (3.26)

where the Dirac indices αβ stem from the indices of the spinors as in (3.24). The
Wigner transform of convolution integrals is most conveniently written in terms of
the relativistic generalization of the Poisson bracket:

3∑
μ=0

(
∂F1

∂Xμ

∂F2

∂Pμ
− ∂F1

∂Pμ

∂F2

∂Xμ

)
=: {F1, F2}P . (3.27)
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This gives for convolution integrals

( ˜F1 � F2

)
(x, p) =

∫
d4s F1

(
x + s

2
, y ′
)
� F2

(
y ′, x − s

2

)
exp(ipμsμ)

= exp

[
i

2
(∂(1)p ∂

(2)
x − ∂(1)x ∂(2)p )

]
F̃1F̃2, (3.28)

which is of infinite order in the phase-space derivatives. Here the operators
∂
(j)
x , ∂

(j)
p ) act only on Fj (j = 1, 2).

For many-body systems far away from the ground state and close to “classical”
systems one may neglect the second and higher order derivatives (as in the
nonrelativistic case) and employ the approximation:

( ˜F1 � F2

)
αβ
(x, p) ≈

∑
γ

F̃1αγ (x, p)F̃2γβ(x, p)

+ i
2

∑
γ

{F1αγ (x, p), F2γβ(x, p)}P . (3.29)

The equation of motion for the spinor �(x) (3.1) and �†(x ′) = �̄(x ′)γ 0 now
can be employed for the time evolution of ρ0(x, x ′) and subsequently be Wigner
transformed (as in the nonrelativistic case). The relativistic BUU (RBUU) equation
then reads (for X = (x + x ′)/2)) after taking the trace over the Dirac indices F̃ =∑
α F̃αα ,

∑
μ

(
 μ∂

μ
X − [

∑
ν

 ν(∂
X
μ �

ν(X)+M∗(∂xμ�s(X)]∂μ 
)
F̃ (X, )

= M∗(X)Ĩcoll(X, ), (3.30)

where Ĩcoll(X, ) describes the interactions between a quasiparticle at space-time
X with effective momentum with other particles in the environment. Eq. (3.30) is
written in covariant form and differs from the nonrelativistic case by an additional
factor 0 on the l.h.s. and a factorM∗ on the r.h.s. in front of the collision term.

The function F̃ (X, ) is the relativistic phase-space distribution function which
is nonvanishing only for 2 = M∗2, i.e. on the quasiparticle energy-shell. The usual
Wigner function f̃ (X, ) then is obtained from

F̃ (X, ) = 2f̃ (X, )�( 0)2πδ( 0 − ε+(p)), (3.31)

where the step function �( 0) restricts the phase space to positive energy states
and the factor of 2 reflects the summation over the 2 spin projections. The function
f̃ (X, ) is the analogue to the nonrelativistic phase-space distribution in the VUU
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equation (2.129). In order to establish the close relation of Eq. (3.30) to the
nonrelativistic limit we divide (3.30) by 0 = E∗p and use X = (t, r) to obtain

(
∂

∂t
+  

E∗p
· ∇r −

∑
μ

[
∑
ν

 ν

E∗p
(∂Xμ �

ν(X)+ M
∗

E∗p
(∂Xμ �

s(X)]∂μ 
)
f̃ (r, ; t)

= M
∗(X)
E∗p

Ĩcoll(X, ). (3.32)

The l.h.s. of Eq. (3.32) can be solved by the testparticle Ansatz,

f̃ (r, ; t) ∼ 1

Nt

Nt ·A∑
i=1

δ3(r− xi (t))δ3( − i(t)) (3.33)

for the number of testparticles per nucleon Nt → ∞. In (3.33) A denotes the
total number of nucleons (baryons) in the system. The equations of motion for the
testparticles i then read (dropping the index i):

dxk

dt
=  k
 0 =

 k

E∗p
= vk, (3.34)

dpk

dt
= −∂�

0

∂xk
+

3∑
j=1

∂�j

∂xk
vj − M

∗

E∗p
∂�s

∂xk
(3.35)

for k = 1, 2, 3 with E∗p =
√
 2 +M∗2, where p is the generalized momentum.

Alternatively, the equations of motion for the quasiparticle kinetic momenta  k
read,

d k

dt
= dpk
dt
− d�

k

dt
= −∂�

0

∂xk
− ∂�

k

∂t
+

3∑
j=1

(
∂�j

∂xk
vj − ∂�

k

∂xj
vj

)
− M∗
E∗p
∂�s

∂xk

= (Es + v× Bs )k − M
∗

E∗p
∂�s

∂xk
(3.36)

with

Es = −∇�0 − ∂�
∂t
, Bs = ∇ ×�. (3.37)

In (3.36) one identifies a (repulsive) Lorentz force—stemming from the vector
selfenergy—and an attractive scalar contribution that arises from the gradient of
the effective mass M∗ or the scalar selfenergy �s , respectively. The upper index s
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in (3.37) indicates that the Lorentz force is due to the strong interaction. In Sect. 4.6
we will encounter another Lorentz force due to the electromagnetic interaction.

The collision term can be worked out in leading order in the interaction by using
the spinor expansion (3.13) and (3.14) and dropping the terms ∼ dr, d†

r . Assuming
again a homogenous system in some “local” space-time cell of volume �t�V
aroundX—as in the nonrelativistic case—one finally ends up with ( =  1),

Icoll(X, 1) =
∑
j

∫
d3 j

(2π)3
M∗j
E∗j

∫
d3 3

(2π)3
M∗3
E∗3

∫
d3 4

(2π)3
M∗4
E∗4

× |M( 1, 2, 3, 4)|2 (2π)4δ4( 1 + 2 − 3 − 4)

×
(
f̃3f̃4(1− f̃1)(1− f̃j )− f̃1f̃j (1− f̃3)(1− f̃4)

)
, (3.38)

where the shorthand notation f̃j = f̃j (X, j ) has been used and the sum over j
runs over all baryon species j . For spin-isospin symmetric matter (without excited
nucleon states) the sum over j just gives a degeneracy factor d=4.4

The Lorentz-invariant matrix element squared |M( 1, 2, 3, 4)|2 should be
evaluated for the local quasiparticles in terms of a coupled-channel Dirac-Brueckner
approach and be antisymmetrized in case of identical fermions, however, this is
quite demanding and out-of scale presently. In practice one adopts matrix elements
from nuclear reactions in vacuum as a function of the invariant energy

√
s and

shifts the invariant energy in line with the selfenergies of the particles involved
in the reaction. When applied to nucleus-nucleus collisions in the range of 100
A MeV to about a few A GeV this strategy should work sufficiently well since
the scattering is dominated by invariant energies far from threshold. The actual
scattering is evaluated in the center-of-mass of the colliding nucleons where their
four-momenta  1, 2 are given by a Lorentz transformation with the individual
center-of-mass velocity vcm. The final state is selected by Monte Carlo following
energy-momentum conservation and an “experimental” angular distribution. Then
the final four-momenta  3, 4 are boosted back to the calculational frame. In
this way the scattering processes do not depend on the actual calculational frame
and conserve energy-momentum in any frame. Furthermore, the selfenergies �s

and �μ transform as a Lorentz-scalar or Lorentz-vector, respectively. In this way
one achieves a relativistic transport approach with well-defined transformation
properties with respect to Lorentz transformations.

4 For readers interested in the explicit spin dynamics we refer to Ref. [11].
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It is instructive to compare the relativistic collision term (3.38) to the nonrela-
tivistic case (2.122),

Inrcoll(X,p1; t) = (2s + 1)(2τ + 1)
∫
d3p2

(2π)3
d3p3

(2π)3
d3p4

(2π)3

× 2πδ(
1

2m
[p2

1 + p2
2 − p2

3 − p2
4])

× (2π)3δ3(p1 + p2 − p3 − p4) v(p2 − p4)vA(p4 − p2)

× (n(X,p3; t)n(X,p4; t)n̄(X,p1; t)n̄(X,p2; t)
−n(X,p1; t)n(X,p2; t)n̄(X,p3; t)n̄(X,p4; t)) , (3.39)

where n(X,pi; t) denote the “local” occupation numbers of states with momentum
p and n̄i = 1 − ni in a space-time cell located around X.5 Furthermore, the factor
(2s + 1)(2τ + 1) results from summation over spin and isospin giving a factor of
d = 4 for spin and isospin symmetric nuclear matter.

Formally the relativistic version is obtained by the substitution

∫
d3p→

∫
d3 

M∗

E∗p
, (3.40)

which gives a Lorentz-invariant integral over the (quasi-) particle momenta via
the (dimensionless) factors M∗/E∗p. The latter are the consequence of γ 0 matrix

elements with the effective spinors since �†(x)�(x) = �̄(x)γ 0�(x) in the
relativistic case. The separate δ-functions for energy and momentum also merge
to a single δ4-function for the sum of the four-momenta.

When using an alternative convention for the spinor normalization, which implies
to replace the Lorentz-invariant integrations

∫
(d3 M∗)/E∗p by

∫
(d3 )/(2E∗p) (as

in case of bosons) one obtains

Icoll(X, 1) =
∑
j

∫
d3 j

(2π)32E∗j

∫
d3 3

(2π)32E∗3

∫
d3 4

(2π)32E∗4

× |M̃( 1, 2, 3, 4)|2 (2π)4δ4( 1 + 2 − 3 − 4)

×
(
f̃3f̃4(1− f̃1)(1− f̃j )− f̃1f̃j (1− f̃3)(1− f̃4)

)
, (3.41)

5 Note that a local nonrelativistic potential U(X) drops out in the energy conserving δ-function.
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where the matrix element M̃( 1, 2, 3, 4) has to be evaluated in the different
normalization. Note, however, that the prefactor of the collision term in (3.32)
changes, too,

M∗

E∗p
→ 1

2E∗p
. (3.42)

We will adopt the convention (3.41) when treating many-body interactions of
fermions and bosons in Sect. 3.2 on the same footing.

3.1.2 Nuclear Equation of State in the QHDModel

In the QHD model the energy-momentum tensor,

T μν = ∂L
∂
(
∂μ�

) ∂�
∂xν
− gμνL, (3.43)

can be evaluated in a straight forward manner, where the energy density E and the
pressure P of a system are given as normal ordered expectation values from the
diagonal elements of the tensor,

E = 〈: T 00 :〉, (3.44)

P = 〈: T ii :〉 = 1

3

3∑
i=1

〈: T ii :〉. (3.45)

For systems in thermal and chemical equilibrium at rest (with  = p and � = 0)
the energy density in mean-field approximation is given by [12]

E = U(σ)+ m
2
ω

2g2
v

�2
0 + E0(T , μ

∗,M∗). (3.46)

In (3.46) E0 is the energy density for a non-interacting particle system evaluated at
the effective chemical potential μ∗ = μ − �0 and with the effective mass M∗ =
M0 −�s , i.e.

E0(T , μ
∗,M∗) = d

∫
d3p

(2π)3
E∗p
(
nF (T ,μ

∗,M∗)+ nF̄ (T , μ∗,M∗)
)
, (3.47)

where nF and nF̄ denote the equilibrium Fermi distribution functions for non-
interacting particles and antiparticles, respectively.
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The pressure in mean-field approximation reads

P = −U(σ)+ m
2
ω

2g2
v

�2
0 +

2

3

3∑
i=1

〈: i�̄γ i∂i� :〉 , (3.48)

where the factor of 2 in front of the sum stems from summation over isospin. This
gives

P = −U(σ)+ m
2
ω

2g2
v

�2
0 + P0(T , μ

∗,M∗), (3.49)

where P0 is the pressure for non-interacting particles with the effective quantities
μ∗ andM∗ at temperature T ,

P0(T , μ
∗,M∗) = d

3

∫
d3p

(2π)3
p2

E∗p

(
nF (T ,μ

∗,M∗)+ nF̄ (T , μ∗,M∗)
)
. (3.50)

Exercise 3.2: Derive the expressions (3.46) and (3.49) for systems in thermal
equilibrium.

In the following we give an example for a relativistic mean-field calculation with
respect to the nuclear equation of state (EoS) for spin and isospin symmetric nuclear
matter at vanishing temperature T . Then only nucleons contribute to the energy
density and the baryon density is equal to the nucleon density, i.e. ρB = ρN . The
binding energy per nucleon EB/A is defined by

EB

A
= E(μ∗)
ρN(μ∗)

−M0, (3.51)

whereM0 denotes the nucleon mass in vacuum, ρN(μ∗) the nucleon density for the
effective chemical potential and E(μ∗) the energy density (3.46).

Figure 3.1 displays EB/A as a function of the nucleon density ρN for the
parameters ms = 550 MeV, mv = 783 MeV, gs = 9.39, gv=11, Bs = 2.95 fm
and Cs= 7.83 fm2 showing a minimum at ρN = ρ0 ≈ 0.168 fm−3 of -16 MeV with
an incompressibility

K := 9ρ2
0
d2EB/A

d2ρN
|ρ0, (3.52)

which gives K ≈ 375 MeV in this case and corresponds to a “hard” equation of
state (denoted by NL6). By varying the parameters one can also describe an EoS
with the same minimum but a lower incompressibilityK . Furthermore, the effective



3.1 Covariant Transport Equations 81

Fig. 3.1 The equation of state (EoS) for infinite nuclear matter, i.e. the binding energy per nucleon
as a function of the nucleon density ρ = ρN , at vanishing temperature T for the parameter set NL6

mass at ρ0 is M∗ ≈ 0.65 M0 which is another value providing information on the
momentum dependence of the Schrödinger-equivalent potential

USEP (p) = �s +�0 + 1

2M0
(�2
s −�2

0 )+
�0

M0
εkin(p) (3.53)

with the kinetic energy εkin(p) =
√

p2 +M2
0 −M0 that is controlled by experimen-

tal data on elastic proton-nucleus scattering.

3.1.3 The Local-Ensemble Method for the Solution of Binary
Collision Terms

Before coming to actual results for relativistic heavy-ion collisions we report on
an alternative solution of the collision integral which is denoted as the “local-
ensemble” method [13]. We start with the following assumption: Let the phase-
space density f (x, ) be a slowly varying function (on an appropriately small
chosen scale) of the four-vector x. This assumption has already been made by
discretizing the Vlasov-part of the relativistic transport equation when computing
the fields only for discrete space-time cells. At each time-step we can therefore
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approximate f (r, ) by

f̃ (r, ) :=
∑
i

δifi( )

{
δi = 1, if r ∈ volume element i
δi = 0, otherwise

. (3.54)

At each cell of the grid one thus has to solve a space-independent Boltzmann-
equation (with Pauli blocking). The probability for one pair of “testparticles” to
undergo a collision during the time interval �t in the volume element �V = �3x

is then given by

W = σB(
√
s,M1,M2)

N
vrel
�t

�V
. (3.55)

Here σB denotes the (total) cross section,
√
s the invariant mass of the baryon pair

and vrel the relative velocity of the scattering particles 1 and 2 with massesM1 and
M2. The latter is given by

vrel = λ
1/2(s,M2

1 ,M
2
2 )

2E∗1E∗2
(3.56)

with λ(x, y, z) = (x − y − z)2 − 4yz.
Out of the n(n− 1)/2 possible pairs (n being the number of “testparticles” in the

cell �3x = �V ) we choose at random �n/2� collision pairs. We therefore have to
replace the probabilityW byW ′,

W ′ := W n(n− 1)/2

�n/2� (3.57)

in order to obtain the correct total transition rate in the cell. In the limit �V →
0,�t → 0, N → ∞ the solutions obtained by this method will converge to the
exact solutions of the Boltzmann equation [14]. Furthermore, this prescription is
evidently covariant. Since we are dealing with transition-rates and do not employ a
geometrical interpretation of the parallel-ensemble method as described in Sect. 2.6,
no problems connected with the time-ordering of the collision processes occur.
Furthermore, this method can be extended to multi-particle transitions as addressed
in Sect. 3.2.

3.1.4 Application of RBUU toAu + Au Collisions at 1 A GeV

As an example we consider Au + Au collisions at a bombarding energy of 1 A
GeV at an impact parameter of b= 7 fm which is about the radius of a Au-nucleus.
Accordingly the nuclei are initially shifted by ± 3.5 fm in x-direction—apart from
the initial distance in z-direction—and boosted towards each other. In the initial
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Fig. 3.2 (Left column) The baryon density distribution ρ(x, y = 0, z; t) for a Au+ Au collision
at 1 A GeV and impact parameter b =7 fm at different times. (Middle column) The momentum
distribution ρp(px, pz; t) for the same reaction at different times (integrated over py ). (Right
column) The effective massM∗(x, y = 0, z; t) for the same reaction at different times

state the nuclei then are Lorentz contracted in z-direction by the factor 1/γcm ≈
0.82 while the initial momentum distributions are elongated in pz-direction by the
factor γcm ≈ 1.22. During the course of the reaction the nuclei overlap, become
compressed in the overlap region and the nucleons start scattering. The “spectators”
or non-interacting nucleons propagate approximately with their original speed and
separate in coordinate space from the interaction zone for large times (cf. l.h.s. of
Fig. 3.2). The middle column shows the momentum distribution of the baryons—
integrated over py—as a function of time. The initially separated Fermi distributions
mix due to scattering in the overlap region and populate the momentum distribution
for lower momenta in the center-of-mass system. Moreover, the momentum distri-
bution becomes tilted in px-direction thus showing a momentum anisotropy in the
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reaction (x−z) plane. This tilting of the momentum distribution is quantified by the
directed flow

v1(y) := 〈 px√
p2
x + p2

y

〉y (3.58)

for a fixed rapidity y defined by

y = 1

2
ln(

1+ β
1− β ) (3.59)

with the final longitudinal velocity β = pz/

√
p2 +M2

0 . In (3.58) the brackets
denote an ensemble average over particles in some small interval around the rapidity
y. The directed flow v1(y) is displayed in Fig. 3.3 for the RBBU system shown in
Fig. 3.2 (solid line) in comparison to a cascade calculation (without selfenergies) at
the same bombarding energy and impact parameter (dashed line). It is seen that the
directed flow close to midrapidity (y ≈ 0) can be further quantified by the derivative

F1 = dv1(y)

dy
|y=0, (3.60)

Fig. 3.3 The directed flow v1(y) for nucleons as a function of rapidity y for aAu+Au collision at
1 A GeV and impact parameter b=7 fm. The solid line shows the result from the RBUU calculation
for the parameter set NL6 while the dashed line displays the result for a cascade calculation
(without selfenergies)
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which is significantly larger in size for the calculation including the scalar and
vector selfenergies (solid line) than without selfenergies. Accordingly experimental
measurements of the proton directed flow (or ‘bounce-off’) provide constraints on
the size of the selfenergies employed.

The sizeable directed flow v1(y) results from the interplay of the scalar and
vector selfenergies which are working in opposite directions. The effect of the scalar
selfenergy is seen directly in the effective mass M∗(r; t) which is shown for the
same system in the right column of Fig. 3.2. In the center of the impinging nuclei
the effective mass drops by about 1/3 due to the scalar selfenergy of about −0.33
GeV; this drop of M∗ becomes larger in the overlap region at t= 10–15 fm/c and
vanishes for late times because the reaction zone disintegrates and the spectator
nucleons become bound again to nuclei of smaller mass.

The impact of the selfenergies on the collective expansion becomes visible also
in the elliptic flow defined by

v2(y) := 〈
p2
x − p2

y

p2
x + p2

y

〉y (3.61)

which is displayed in Fig. 3.4 for the RBBU system shown in Fig. 3.2 (solid line)
in comparison to a cascade calculation at the same bombarding energy and impact
parameter (dashed line). Again the effect of the selfenergies is sizeable and reflects
the collective acceleration by the Lorentz and scalar forces on the particles. The

Fig. 3.4 The elliptic flow v2(y) for nucleons as a function of rapidity y for a Au+Au collision at
1 A GeV and impact parameter b=7 fm. The solid line shows the result from the RBUU calculation
for the parameter set NL6 while the dashed line displays the result for a cascade calculation
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negative elliptic flow is also denoted as “squeeze-out” since the particles are pushed
in a direction perpendicular to the reaction plane. For further applications of the
relativistic BUU approach we refer the reader to the reviews [15, 16].

In summarizing this section we have achieved a covariant formulation of the
transport equations on the basis of an effective Lagrangian model (QHD) and
pointed out the importance of strong scalar and vector selfenergies for the buildup
of collective flow in the colliding systems. However, this model does not allow to
compute the matrix elements for the two-body interactions in a consistent fashion
and is based on the on-shell quasiparticle picture which loses its validity due to a
sizeable scattering width of the particles at higher bombarding energy (and baryon
density). Furthermore, with increasing bombarding energy inelastic baryon-baryon
collisions become dominant such that final channels with more than two particles
(2 → n) become important. The question then arises how to treat the backward
channels (n→ 2) in order to maintain detailed balance and the correct equilibrium
state. This issue will be addressed in the next section.

3.2 Multi-Particle Transitions

For the discussion of the general on-shell collision terms the hadron selfenergies will
be discarded for transparency which implies to replace the four-momentum (E∗p, )
by p = (E,p) andM∗ byM for fermions with the on-shell energyE = √p2 +M2.
Furthermore, we will also neglect selfenergies for the mesons such that their on-shell

four-momenta can also be written as (E,p) with E =
√

p2 +M2
h andMh denoting

the mass of the hadron h. The transport equation (3.41) in the cascade limit then
reduces to

(∂t + �p
E
· �∂r)fi(X,p) = 1

2E
Iicoll(X,p), (3.62)

where fi(X,p) is the on-shell phase-space distribution function for a hadron with
quantum numbers i. It describes the free flow of hadrons that interact with each
other during the propagation. In order to describe fermions and bosons on the same
footing the normalization for baryon spinors is adopted as in (3.41), i.e. the on-shell
collision integral for 2↔ 2 interactions can be written (in case of fermions) as

I i−oncoll [2↔ 2] =
∑
j

∑
k,l

∫
d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

×W2,2(p, p2; i, j | p3, p4; k, l) (2π)4 δ4(pμ + pμ2 − pμ3 − pμ4 )
×[fk(X,p3)fl(X,p4)(1− fi(X,p))(1− fj (X,p2))

−fi(X,p)fj (X,p2)(1− fk(X,p3))(1− fl(X,p4))], (3.63)
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where the on-shell energy p0
k of particle k is rewritten as Ek. Here we have replaced

the matrix element (squared) byW2,2(p, p2; i, j | p3, p4; k, l) indicating explicitly
the discrete quantum numbers of the initial states (i, j) and final states (k, l) to allow
for a suitable formulation of n-body transitions.

The on-shell version of the collision integral for (2↔ m) interactions then reads
in straight forward generalization (for nonidentical particles):

I i−oncoll [2↔ m] =
∑
ν

∑
λ

∫
d3pj

(2π)32Ej

m∏
k=1

d3pk

(2π)32Ek

×W2,m(p, pj ; i, ν | pk; λ) (2π)4 δ4(pμ + pμj −
m∑
k=1

p
μ
k )

×[f̄i(X,p)f̄j (X,pj )
m∏
k=1

fk(X,pk)

−fi(X,p)fj (X,pj )
m∏
k=1

f̄k(X,pk)]. (3.64)

The discrete quantum numbers for particle 2 with momentum pj are denoted
by ν while those for the final states are abbreviated by λ while the transition
matrix element (squared) is denoted by W2,m(p, pj ; i, ν | pk; λ) which should be
evaluated within a suitable many-body approach. However, for 2 → m transitions
these may be extracted to some extend from two-body scattering data (see below).
Furthermore, we have used

f̄j (X,pk) = 1+ ηfj (X,pk) (3.65)

with η = −1 for fermions and η = 1 for bosons to allow for a simultaneous
description of fermions and bosons in the initial and final states.6

The extension to n↔ m transitions gives,

I i−oncoll [n↔ m] =
∑
ν

∑
λ

∫ n∏
j=2

d3pj

(2π)32Ej

m∏
k=1

d3pk

(2π)32Ek

×Wn,m(p, pj ; i, ν | pk; λ) (2π)4 δ4(pμ +
n∑
j=2

p
μ
j −

m∑
k=1

p
μ
k )

6 Note that in case of identical bosons of type i there are additional statistical factors of 1/ni ! in
the collision integral.
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×[f̄i (X,p)
n∏
j=2

f̄j (X,pj )
m∏
k=1

fk(X,pk)

−fi(X,p)
n∏
j=2

fj (X,pj )
m∏
k=1

f̄k(X,pk)]. (3.66)

For large times (t → ∞) all collision integrals will vanish in equilibrium, which
implies that “gain” and “loss” terms become equal in magnitude.

The number of reactions in the covariant 4-volume d3rdt = dV dt is obtained
by dividing the gain and loss terms in the collision integrals by twice the energy
2p0 = 2E1 (according to Eq. (3.62)), integrating over d3p/(2π)3 and summing
over the discrete quantum numbers i. For the case of fermion two-body collisions
this gives (using p = p1) for the “loss” term

dNcoll[2→ 2]
dtdV

=
∑
i,j

∑
k,l

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

×W2,2(p1, p2; i, j | p3, p4; k, l) (2π)4 δ4(p
μ
1 +pμ2 − pμ3 −pμ4 )

×[fi(X,p1)fj (X,p2)(1− fk(X,p3))(1− fl(X,p4))], (3.67)

where X is within the space-time volume dtdV . In case of n → m processes this
leads to

dNcoll[n→ m]
dtdV

=
∑
i,ν

∑
λ

∫ n∏
j=1

d3pj

(2π)32Ej

m∏
k=1

d3pk

(2π)32Ek

×Wn,m(pj ; i, ν | pk; λ) (2π)4 δ4(

n∑
j=1

p
μ
j −

m∑
k=1

p
μ
k )

× (
n∏
j=1

fj (X,pj )
m∏
k=1

f̄k(X,pk)) (3.68)

and in case of m→ n processes to

dNcoll[m→ n]
dtdV

=
∑
i,ν

∑
λ

∫ n∏
j=1

d3pj

(2π)32Ej

m∏
k=1

d3pk

(2π)32Ek

×Wn,m(pj ; i, ν | pk; λ) (2π)4 δ4
n∑
j=1

p
μ
j −

m∑
k=1

p
μ
k

×
⎛
⎝ m∏
k=1

fk(X,pk)
n∏
j=1

f̄j (X,pj )

⎞
⎠ . (3.69)
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In high energy nucleus-nucleus collisions, which are dominated by produced
mesons of low phase-space density, the Pauli blocking or Bose-enhancement terms
f̃k are ≈ 1, which implies to replace the quantum statistical ensembles by classical
ones. In this limit the integrals over the final momenta can be carried out provided
that the transition probabilitiesWn,m do not sensitively depend on the final momenta
pk and essentially only depend on the invariant energy

√
s. For example, for proton-

antiproton annihilation, where the final state on average consists of 5 pions, this is a
reasonable approximation.

Employing the definition of the n-body phase-space integrals for total 4-
momentum Pμ [17],

Rn(P
μ;M1, ..,Mn) =

∫ n∏
k=1

d3pk

(2π)32Ek
(2π)4 δ4(Pμ −

n∑
j=1

p
μ
j ), (3.70)

one obtains the recursion relation (cf. Appendix E for a detailed derivation)

Rn(P
μ,M1, ..,Mn) =

∫
d3pn

(2π)32En
Rn−1

(
Pμ − pμn ;M1, ..,Mn−1

)
. (3.71)

Note, that the phase-space integrals are of dimension GeV2n−4 or (1/fm)2n−4.
Inserting (3.70) this gives in case of n→ m processes

dNcoll[n→ m]
dtdV

=
∑
i,ν

∑
λ

∫ ⎛⎝ n∏
j=1

d3pj

(2π)32Ej

⎞
⎠ Wn,m(P )

× Rm(Pμ =
n∑
j=1

p
μ
j ;M1, ..,Mm)

n∏
j=1

fj (X,pj )

=
∑
i,ν

∑
λ

∫ ⎛⎝ n∏
j=1

d3pj

(2π)3

⎞
⎠ P(n→ m)λi,ν

⎛
⎝ n∏
j=1

fj (X,pj )

⎞
⎠ ,

(3.72)

where M1, ..,Mm stand for the masses in the final state, and in case of m → n

processes

dNcoll[m→ n]
dtdV

=
∑
i,ν

∑
λ

∫ ( m∏
k=1

d3pk

(2π)32Ek

)
Wn,m(P )

× Rn(Pμ =
m∑
k=1

p
μ
k ;M1, . . . ,Mn)

(
m∏
k=1

fk(X,pk)

)
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=
∑
i,ν

∑
λ

∫ ( m∏
k=1

d3pk

(2π)3

)
P(m→ n)

i,ν
λ

(
m∏
k=1

fk(X,pk)

)
.

(3.73)

For fixed sets of quantum numbers (i, ν) and λ in the initial and final states this
relates the integrands P(n → m) in (3.72) and P(m → n) in (3.73) for individual
scatterings as (dropping the indices for quantum numbers):

P(m→ n)

P (n→ m)
=
[
m∏
k=1

1

2Ek

] ⎡
⎣ n∏
j=1

2Ej

⎤
⎦ Rn(Pμ =

∑n
k=1 p

μ
k ;M1, . . . ,Mn)

Rm(Pμ =∑m
j=1 p

μ
j ;M1, ..,Mm)

,

(3.74)

ifWn,m essentially depends only on the invariant energy
√
s = √P 2. Note, that the

r.h.s. of (3.74) is in units of GeV3(n−m) or fm3(m−n) such that a factor (dV )n−m is
needed to interpret the quantities as relative “probabilities.” Thus, once the transition
probabilities Wn,m are known as a function of

√
s for a given set of quantum

numbers, the integrand P(n → m) in (3.72) is determined by phase space and
the backward reactions in (3.73) are fixed by Eq. (3.74).

3.2.1 Baryon-Antibaryon Annihilation and Recreation

As an example for multi-particle production we consider the processes BB̄ ↔ m

mesons, which are of relevance for annihilation of antibaryons on baryons and the
recreation of BB̄ pairs bymmeson interactions. The 4-differential collision rate for
baryon-antibaryon annihilation (1+ 2→ 3, ..,m+ 2) then is given by

dNcoll[BB̄ → m mesons]
dtdV

=
∑
i,j

∑
λm

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

×W2,m(P = p1 + p2; i, j ; λm)
×Rm(Pμ;M3, ..,Mm+2)fi(X,p1)fj (X,p2),

(3.75)

where fi and fj denote the baryon and antibaryon phase-space distributions,
respectively. The integrand is related to the annihilation cross section σann.(

√
s)

for a baryon-antibaryon pair with quantum numbers i, j as

∑
m

∑
λm

W2,m(p1 + p2; i, j ; λm) Rm(pμ1 + pμ2 ;M3, ..,Mm+2)

= 2
√
λ̃(s,M2

1 ,M
2
2 ) σann.

(√
s
) = 4E1E2 vrel σann.

(√
s
)

(3.76)
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with the relativistic relative velocity

vrel =
√
λ̃(s,M2

1 ,M
2
2 )

2E1E2
, (3.77)

involving

λ̃(x, y, z) = (x − y − z)2 − 4yz. (3.78)

In (3.76) the sum runs over the final meson multiplicity (m ≈ 3, . . . , 9) in the final
state and over λm which denotes all discrete quantum numbers of the final mesons
for given multiplicity m.

Note, that by summing (3.75) additionally over m, but keeping the quantum
numbers i, j fixed, one arrives at

dN
i,j
coll

dtdV
=
∫
d3p1

(2π)3
d3p2

(2π)3
vrel (p1, p2) σann

(√
s
)
fi(X,p1)fj (X,p2).

(3.79)

If the product of the relative velocity and the cross section, i.e. vrelσann, is
approximately constant (see below) the integrals over the momenta in (3.79) give
the classical Boltzmann limit

dN
i,j
coll

dtdV
= < vrel σann > ρi(X)ρj (X), (3.80)

where ρi(X) is the density of the hadron with quantum numbers i.
The number of reactions per volume and time for the back processes is then given

by (λm = k1, .., km)

dNcoll[m mesons → BB̄]
dtdV

=
∑
i,j

∑
λm

∫ (m+2∏
k=3

d3pk

(2π)32Ek

)

×W2,m(
√
s; i, j, λm) R2(P

μ =
m+2∑
k=3

p
μ
k ;M1,M2)

(
m+2∏
k=3

fk(X,pk)

)
, (3.81)

assuming W2,m(
√
s; i, j, λm) to depend only on the available energy

√
s and

conserved quantum numbers.
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To proceed further, some simplifying assumptions have to be invoked to lead to
a tractable problem for antibaryon annihilation and production. Experimentally, the
differential multiplicity in the pions from pp̄ annihilation at low

√
s above threshold

can be described as

P(Nπ ) ≈ 1√
2πD

exp(− (Nπ− < Nπ >)
2

2D2 ) (3.82)

with an average pion multiplicity of < Nπ >≈ 5 and D2 = 0.95 [18]. This
observation is reminiscent of flavor rearrangement processes in the BB̄ annihilation
reaction to vector mesons and pseudoscalar mesons, e.g. ρ + ρ + π or ω+ω+ π0,
where the ρ and ω “later” decay to 2 or 3 pions, respectively. In this picture the
ρ+ρ+π final channel in pp̄ annihilation is the dominant process leading finally to
5 pions. Alternatively, the ω + ω + π0 channel leads to 7 pions in the final channel
which will appear on the scale of the ω-meson lifetime. Three pions are obtained
in the direct 3 pion decay which, however, is substantially suppressed at higher

√
s

due to spin multiplicities.
For the actual example we employ a quark rearrangement model for BB̄

annihilation to 3 mesons, where the final mesonsMi may be pseudoscalar or vector
mesons, i.e. (π, η) or (ρ, ω), respectively, when restricting to the nonstrange baryon-
antibaryon reactions. In the following, the quantum numbers denoted by λm will
be separated into different channels c, that can be distinguished by their mass
decomposition, and degenerate quantum numbers such as spin multiplicities and
isospin projections. In the latter sense the sum over the final quantum numbers λm
in (3.75) and (3.81) then includes a sum over the mass partitions c = (M3,M4,M5),
a sum over the spins of the mesons and a sum over all isospin quantum numbers
that are compatible with charge conservation in the transition. The probability for a
channel c = (M3,M4,M5) then reads

Pc(
√
s;M3,M4,M5) = N3

(√
s
)
R3(
√
s;M3,M4,M5) N

c
f in, (3.83)

where the number of “equivalent” meson final states in the channel c is given by

Ncf in = (2s3 + 1)(2s4 + 1)(2s5 + 1)
Fiso

Nid ! . (3.84)

In (3.84) sj denote the spins of the final mesons, Fiso is the number of isospin
projections compatible with charge conservation while Nid is the number of
identical mesons in the final channel (e.g. Nid = 3 for the π0π0π0 final channel).
This combinatorial problem for the final number of statesNcf in is of finite dimension
and easily tractable numerically. For each mass partition c = (M3,M4,M5) the
decay probability then is given by the 3-body phase space R3(

√
s,M3,M4,M5)

in the center-of-mass system and the allowed number of final states Ncf in since

the absolute normalization—described by N3(
√
s)—is fixed by the constraint

∑
c

Pc = 1.
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In case of nucleon-antinucleon annihilation the following final meson channels
contribute:

(1) πππ (2) ππρ (3) ππω (4) πρρ (5) πρω (6) πωω, (3.85)

when excluding 3 vector mesons in the final channel. According to (3.83) the
distribution in the final number of pions (including the explicit vector meson decays
to pions) can be evaluated as a function of

√
s since it only depends on the phase

space and the number of possible final states Ncf in in each channel c.

For the backward reactions, i.e. the 3 meson fusion to a BB̄ pair, the quarks and
antiquarks are redistributed in a baryon and antibaryon, respectively, incorporating
the baryons N and � as well as their antiparticles. In line with (3.83) the relative
population of states (with the same quark content) is determined by phase space, i.e.

Pc′(
√
s;M1,M2) = N2

(√
s
)
R2(
√
s; c′ = (M1,M2)) (2s1 + 1)(2s2 + 1)

= N2
(√
s
)
R2(
√
s;M1,M2) N

c′
B , (3.86)

where Nc
′
B now denotes the number of final states for the particular mass channel

c′ in the backward reaction. The absolute normalization N2(
√
s) is fixed again by

the constraint
∑
c′ Pc′ = 1. In this particular case the number of mass channels is

2 for baryon-antibaryon pairs while for mesons there are 6 different mass channels
(3.85). Accordingly, a 2×6 mass channel matrix has to be calculated and stored (or
parametrized).

As a special (and reduced) example we consider the reactions π−π+π− or
π−ρ+π− or π−ρ+ρ− (and isospin combinations), i.e. in terms of quarks and
antiquarks ūd + d̄u + ūd → (ūūd̄) + (udd): here the final states may be either
p̄ + n, �̄− + n, p̄ + �0 or �̄− + �0 within the Fock space considered. Thus the
transition channel mass matrix even reduces to a 2×3 matrix. Note that the final
states with a �-resonance are favored due to the spin factors in (3.86), however,
somewhat suppressed by the 2-body phase-space integral R2(

√
s) for low

√
s.

One is thus left with the BB̄ annihilation problem

dNcoll[BB̄ → 3 mesons]
dtdV

=
∑
c

∑
c′

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
W2,3

(√
s
)

×N3
(√
s
)
R3(p1 + p2; c = (M3,M4,M5)) N

c
f in fi(X,p1)fj (X,p2),

(3.87)
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where (M1,M2) denote the baryon and antibaryon masses in the channel c′ and
(M3,M4,M5) the final meson masses in the channel c. Equation (3.87) can be
rewritten as

dNcoll[BB̄ → 3 mesons]
dtdV

=
∑
c

∑
c′

∫
d3p1

(2π)3
d3p2

(2π)3
P

2,3
cc′
(√
s
)
fi(X,p1)fj (X,p2) (3.88)

with the channel probabilities

P
2,3
cc′
(√
s
) = 1

4E1E2
W 2,3 (√s) N3

(√
s
)
R3(p1 + p2; (M3,M4,M5)) N

c
f in.

(3.89)

Note, that by construction we have

∑
c

P
2,3
cc′
(√
s
) = 1

4E1E2
W 2,3 (√s) = vrel σann (√s)c′ , (3.90)

where vrel denotes the relative velocity (3.77) and σann(
√
s)c′ is the total annihila-

tion cross section for BB̄ pairs of channel c′.
The backward invariant collision rate is given by

dNcoll[3 mesons → BB̄]
dtdV

=
∑
c

∑
c′

∫ ( 5∏
k=3

d3pk

(2π)32Ek

)
W2,3

(√
s
)

×N2
(√
s
)
R2(

5∑
k=3

pk; c′ = (M1,M2)) N
c′
B

(
5∏
k=3

fk(X,pk)

)
. (3.91)

Using Eq. (3.74), the relation (3.76) for 3 mesons in the final state and (3.90) one
arrives at

dNcoll[3 mesons→ BB̄]
dtdV

=
∑
c

∑
c′

∫
d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5
4E1E2

×vrel σ
(√
s
)
c′
N2
(√
s
)

N3
(√
s
) R2(P

μ; c′ = (M1,M2))

R3(Pμ; c = (M3,M4,M5))

Nc
′
B

Ncf in

×f3(X,p3)f4(X,p4)f5(X,p5) (3.92)
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for the backward reaction 3+ 4+ 5→ 1+ 2. Equation (3.92) can now be rewritten
as

dNcoll[3 mesons→ BB̄]
dtdV

=
∑
c

∑
c′

∫
d3p3

(2π)3
d3p4

(2π)3
d3p5

(2π)3
P

3,2
cc′
(√
s
)

×f3(X,p3)f4(X,p4)f5(X,p5) (3.93)

with the ‘transition integrand’

P
3,2
cc′
(√
s
) = E1E2

2E3E4E5
vrel σ

(√
s
)
c′
N2
(√
s
)

N3
(√
s
) R2(P ; c′ = (M1,M2))

R3(P ; c = (M3,M4,M5))

Nc
′
B

Ncf in
,

(3.94)

which is of dimension GeV−3 or fm3.

3.2.2 Numerical Implementation

For a reformulation of the “transition integrands” (specified in (3.94)) in a testparti-
cle representation one has to recall that the average density of a meson with quantum
numbers k is obtained by integration over momentum as:

nk(X) =
∫
d3p

(2π)3
fk(X,p), (3.95)

where e.g. charge, strange flavor content, total spin and spin projection are specified
by the discrete quantum number k. The conversion formula thus reads:

∫
d3p

(2π)3
fk(X,p)→ 1

dV

∑
i ε dV

, (3.96)

where dV is a (small) finite volume and the sum runs over all test particles in
the volume dV with quantum numbers k. The number of BB̄ annihilations in the
volume dV during the time dt is thus given by

NBB̄ =
dt

dV

∑
i,j ε dV

vrel(i, j)σann(
√
si,j ) (3.97)
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with the invariant energy squared

si,j = (p1 + p2)
2, (3.98)

where p1, p2 denote the 4-momenta of the colliding BB̄ pair. The relative velocity
vrel(i, j) is given by (3.77) while the annihilation cross section σann(

√
s) has

to be specified for all baryon-antibaryon pairs. In case of nucleon-antinucleon
reactions this cross section is rather well known experimentally [19] and the product
vrel σann(

√
s) ≈ 50 mb for a wide range of invariant energies

√
s,

σann
(√
s
) = 50[mb]

vrel
, (3.99)

which holds well in the dynamical range of interest. We thus can adopt the
Boltzmann limit (3.80) to estimate the BB̄ annihilation time at nucleon density ρ as

τann. ≈ (5fm2ρ)−1 ≈ 1.2
ρ0

ρ
[fm/c]. (3.100)

The number of backward reactions by 3 mesons in the testparticle picture in the
volume dV and time dt according to (3.92) for a given mass channel c′ is given by

N3meson = dt

dV dV

∑
i,j,k ε dV

E1E2

2EiEjEk
vrel(1, 2)σ

(√
s
)
c′

× N2
(√
s
)

N3
(√
s
) R2(

√
s; c′ = (M1,M2))

R3(
√
s; c = (Mi,Mj ,Mk))

Nc
′
B

Ncf in
=

∑
i,j,k ε dV

Pijk,

(3.101)

where the channel c is defined by the colliding mesons (cf. (3.81)) and the outgoing
channel c′ by the BB̄ pair with masses M1 and M2 and energies E1 and E2,
respectively. In (3.101) the summation over the mesons in the volume dV is
restricted to i < j < k in case of 3 identical mesons (e.g. 3 π0’s) and to i < j
in case of 2 identical mesons i, j in order to account for the statistical factorNid ! in
Eq. (3.84).

Equations (3.97) and (3.101) are well suited for a Monte Carlo decision problem,
i.e. a transition in the space-time volume dtdV is accepted if the probability Pijk is
larger than some random number in the interval [0,1]. One has to assure only, that all
Pijk are smaller than 1, which—for a fixed volume dV—can easily be achieved by
adjusting the time-step dt . This evaluation of scattering probabilities—in the mutual
center-of-mass system—is Lorentz-invariant and does not suffer from geometrical
collision criteria as in the standard approaches that imply a different sequence
of collisions when changing the reference frame by a Lorentz transformation
(cf. Sect. 3.1.3). It is worth to point out that this numerical implementation is a
promising way to treat n ↔ m transitions in transport theories without violating
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Fig. 3.5 The number of NN̄ → ρρπ reactions as a function of the invariant energy
√
s

for a system in thermal and chemical equilibrium at temperature T = 170 MeV and chemical
potential μq = 0. The solid line denotes the differential number in the backward (ρρπ) collisions,
respectively

covariance or causality. In case of infinitesimal volumes dV and time steps dt it
gives the correct solution to the many-particle Boltzmann equation, however, the
constraints in the actual derivation require space-time volumes of sufficient size.

As a numerical test the number of collisions in a single box of volume 10
fm3 during the time dt =1 fm/c has been calculated with spatially uniform phase-
space distributions given by a classical system of hadrons in thermal and chemical
equilibrium, i.e.

fk(p) = (2s + 1)(2I + 1)

(2π)3
exp(−Ek(p)/T ) (3.102)

with s and I denoting spin and isospin, respectively. The particles taken into account
are N,� and their antiparticles and π, ρ on the meson side in the strangeness
sector S=0. The numerical results for the number of BB̄ annihilation collisions
(→ πρρ) are shown in Fig. 3.5 in terms of the dashed line as a function of

√
s, which

corresponds to the invariant energy in an individual collision.7 As can be seen from
Fig. 3.5 the dashed line very well coincides with the solid line that corresponds to
the energy differential number of πρρ collisions for the backward reactions. Thus
the numerical scheme employed well reproduces the detailed balance relation in

7 This figure is taken from Ref. [20].
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thermal equilibrium for a given channel combination cc′. We note in passing that
the detailed balance relation is fulfilled for all channel combinations cc′ specified
above.

Thus in particular the transitions 2 ↔ n can be treated on the basis of
detailed balance once the matrix elements (squared) are known or extracted from
experimental reaction data. The drawback, however, is that this employs a multi-
dimensional channel matrix and the dimensions of this matrix become very large
when including all Jp = 0− and Jp = 1− meson states as well as the baryon octet
and decuplet and their antiparticles [21].

In summarizing this section we have obtained a consistent description of the
collision integral for n ↔ m transitions in the case of vanishing Pauli blocking
and Bose-enhancement factors for transition matrix elements that essentially only
depend on the invariant energy

√
s of the colliding particles. The drawback is that

these transition matrix elements (squared) are difficult to compute and notoriously
model dependent. Only in case of detailed experimental information on 2 → m

production channels the inverse scattering probabilitiesm→ 2 may be fixed.

Solution of Exercises

Exercise 3.1: Prove the expressions (3.18) and (3.19).

The field operator �(x) and the Pauli-adjoint operator �̄(x) can be expanded in
terms of plane waves and effective spinors as (cf. (3.13) and (3.14)) as

�(x) =
∫

d3 

(2π)3/2
M∗

E∗p
×

2∑
r=1

[cr(x, )ur( ,M∗) exp(−i(ε+(p)t − p · x))

+ d†
r (x, )vr( ,M

∗) exp(i(ε−(p)t − p · x))], (3.103)

�̄(x) =
∫

d3 

(2π)3/2
M∗

E∗p
×

2∑
r=1

[c†
r (x, )ūr( ,M

∗) exp(+i(ε+(p)t − p · x))

+ dr(x, )v̄r ( ,M∗) exp(−i(ε−(p)t − p · x))],

with E∗p =
√
 2 +M∗2 = √(p−�)2 +M∗2 and

ε+(p) =
√
 2 +M∗2 +�0, ε−(p) = −

√
 2 +M∗2 + �0. (3.104)
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The quasiparticle scalar density ρs in some space-time cell at x for isospin
symmetric nuclear matter then is given by

ρs(x) = 2〈: �̄� :〉 = 2
2∑
r=1

∫
d3 

(2π)3

(
M∗

E∗p

)2

(3.105)

× <: [c†
r (x, )ūr ( ,M

∗) exp(+i(ε+(p)t − p · x))
+ dr(x, )v̄r ( ,M∗) exp(−i(ε−(p)t − p · x))]
× [cr(x, )ur( ,M∗) exp(−i(ε+(p)t − p · x))
+ d†

r (x, )vr( ,M
∗) exp(i(ε−(p)t − p · x))] :>

= 2
2∑
r=1

∫
d3 

(2π)3

(
M∗

E∗p

)2

×
(
<: c†

r (x, )ūr( ,M
∗)cr(x, )ur( ,M∗) :>

+ <: dr(x, )v̄r ( ,M∗)d†
r (x, )vr( ,M

∗) :>
)

since mixed terms of c− and d− operators do not contribute. The factor of 2 stems
from summation over isospin. After normal ordering the drd

†
r -term picks up a minus

sign, however, the normalization v̄r ( )vr( )=-1 gives another minus sign while
ūr ( )ur( )=1. With the particle/antiparticle density operators (cf. Appendix G)

Ncr (x, ) =
M∗

E∗p
c†
r (x, )cr( ), N

d
r (x, ) =

M∗

E∗p
d†
r (x, )d

†
r (x, ) (3.106)

we arrive at

ρs(x) = 2
2∑
r=1

∫
d3 

(2π)3
M∗

E∗p

(
Ncr (x, )+Ndr (x, )

)
, (3.107)

since a factorM∗/E∗p is contained in the definition of the particle number operators.
For spin and isospin symmetric nuclear matter the particle number operators do not
depend on the spin index r such that the summation over spin gives another factor
of 2. Thus identifying

f ∗p (x, ) ≡ Nc(x, ), f ∗a (x, ) ≡ Nd(x, ) (3.108)

in the local cell of average space-time position x we obtain Eq. (3.19). Here Nc and
Nd denote spin averaged occupation densities.
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The quasiparticle density ρN for isospin symmetric nuclear matter is evaluated
in a similar fashion:

ρN(x) = 2〈: �̄γ 0� :〉 = 2
2∑
r=1

∫
d3 

(2π)3

(
M∗

E∗p

)2

(3.109)

×
(
<: c†

r (x, )ūr( ,M
∗)cr(x, ) γ 0 ur( ,M

∗) :>

+ <: dr(x, )v̄r ( ,M∗) γ 0 d†
r (x, )vr( ,M

∗) :>
)
.

After normal ordering the drd
†
r term changes sign and

ūr ( ,M
∗)γ 0ur( ,M

∗) = v̄r ( ,M∗)γ 0vr ( ,M
∗) = E

∗
p

M∗
(3.110)

cancels a factorM∗/E∗p. We thus obtain

ρN(x) = 2
2∑
r=1

∫
d3 

(2π)3
(
Nrc (x, )−Nrd (x, )

)

≡ 4
∫
d3 

(2π)3

(
f ∗p (x, )− f ∗a (x, )

)
, (3.111)

which proves Eq. (3.18).

Exercise 3.2: Derive the expressions (3.46) and (3.49) for systems in thermal
equilibrium.

The energy density in mean-field approximation for isospin symmetric nuclear
matter in equilibrium is given by

E = U(σ)−O(ω)+ 2〈: i�̄γ 0∂0� :〉 − 2〈: �̄ (γμ (i∂μ − �μ)− (M − �s))� :〉
= U(σ)−O(ω)+ 2〈: i�̄γ 0∂0� :〉 − 2 〈: �̄ (γμ μ −M∗)� :〉︸ ︷︷ ︸

=0

(3.112)
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with ωμ = (ω, 0, 0, 0) andO(ω) = m2
ωω

2/2. With the spinor expansions for� and
�̄ we obtain:

E = U(σ)−O(ω)+ 2
2∑
λ=1

∫
d3p

(2π)3
M∗

E∗p

(
ε+(p)〈: c†

λ(p)cλ(p) :〉

−ε−(p)〈: dλ(p)d†
λ(p) :〉

)

= U(σ)−O(ω)+ d
∫
d3p

(2π)3

(
(E∗p +�0) nF (T ,μ

∗,M∗)

−(−E∗p +�0) nF̄ (T , μ
∗,M∗)

)

= U(σ)−O(ω)+�0ρB + d
∫
d3p

(2π)3
E∗p
(
nF (T ,μ

∗,M∗)+ nF̄ (T , μ∗,M∗)
)

= U(σ)−O(ω)+�0ρB + E0(T , μ
∗,M∗)

= U(σ)+ m
2
ω

2g2
v

�2
0 + E0(T , μ

∗,M∗) (3.113)

with the Fermi functions nF and nF̄ for the equilibrium occupation densities for
particles and antiparticles. Here E0 is the energy density for a non-interacting
particle evaluated at the effective chemical potential μ∗ and with the effective mass
M∗. Furthermore, Eq. (3.3) or

�0ρB = gv ω0ρB = g2
v

m2
ω

ρ2
B

has been used in the last line.
The pressure in mean-field approximation reads

P = −U(σ)+O(ω)+ 1

3

3∑
i=1

2〈: i�̄γ i∂i� :〉. (3.114)

The further evaluation is similar to the energy density case above and gives

P = −U(σ)+O(ω)+ 2

3

2∑
λ=1

3∑
i=1

∫
d3p

(2π)3

(
M∗

E∗p

)2

×
(
pi

M∗
〈: c†

λ(p)cλ(p) :〉pi +
pi

M∗
〈: dλ(p)d†

λ(p) :〉pi
)
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= −U(σ)+O(ω)+ d
3

∫
d3p

(2π)3
p2

E∗p

(
nF (T ,μ

∗,M∗)+ nF̄ (T , μ∗,M∗)
)

= −U(σ)+O(ω)+ P0(T , μ
∗,M∗) = −U(σ)+ m

2
ω

2g2
v

�2
0 + P0(T , μ

∗,M∗),

(3.115)

where P0 is the pressure for a non-interacting particle with the effective quantities
μ∗ andM∗.
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4Relativistic Dynamics and Off-Shell Transport

This chapter is devoted to the covariant dynamics of strongly-interacting systems
on the level of Kadanoff–Baym equations that are solved explicitly for the scalar
φ4-theory in a finite box. Special attention is paid to the spectral functions of
the degrees of freedom and the final equilibrium state. The quantum Boltzmann
equation is derived in the on-shell limit and the solution of the Kadanoff–Baym
equations is compared to those from the on-shell Boltzmann limit as a function
of the coupling strength. Furthermore, covariant off-shell transport equations are
derived in first-order gradient expansion of the (Wigner transformed) Kadanoff–
Baym equations and an extended testparticle Ansatz is introduced that allows for
a convenient solution of the transport equations. A related derivation for fermion
systems is included accordingly. As an example for off-shell transport we compare
the results for vector mesons in heavy-ion reactions at 2 A GeV in the on-shell
and off-shell versions. Furthermore, retarded electromagnetic fields—generated
by moving charges in ultra-relativistic heavy-ion reactions—are computed for
noncentral collisions of Au + Au and Cu + Au at an invariant energy

√
sNN =

200 GeV without introducing any additional parameter since the electromagnetic
coupling e2/(4π) is well known.1

4.1 Relativistic Formulations

Relativistic formulations of the many-body problem are essentially described within
covariant field theory. Since the fields themselves are distributions in space-time x =
(t, x) one changes from the Schrödinger picture discussed before to the Heisenberg
picture.2 Furthermore, the field theoretical problem in principle encounters infinitely
many particles in a wavefunction such that a “top-down” scenario (N → n < N)

1 In this chapter we will use the Einstein convention throughout if not specified explicitly.
2 The different pictures of quantum mechanics are recalled in Appendix A.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
W. Cassing, Transport Theories for Strongly-Interacting Systems, Lecture Notes
in Physics 989, https://doi.org/10.1007/978-3-030-80295-0_4

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80295-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-80295-0_4


104 4 Relativistic Dynamics and Off-Shell Transport

is no longer suitable. Nevertheless, we will encounter very similar structures to the
BBGKY hierarchy in the Martin–Schwinger hierarchy.

In the Heisenberg picture the time evolution of the system is described by time-
dependent operators that are evolved with the help of the time evolution operator
Û(t, t0) which follows

i
∂Û(t, t0)

∂t
= Ĥ (t)Û (t, t0), (4.1)

with Ĥ denoting the Hamilton operator of the system. Equation (4.1) is formally
solved by

Û(t, t0) = T
(

exp

[
−i
∫ t
t0

dz Ĥ (z)

])
=
∞∑
n=0

1

n! T [−i
∫ t
t0

dz Ĥ (z)]n , (4.2)

where T denotes the time-ordering operator, which is also denoted as Dyson series.
Let us assume that the initial state is given by some density matrix ρ̂, which may be
a pure or mixed state, then the time evolution of any operator Ô in the Heisenberg
picture from time t0 to t is given by

O(t) = 〈ÔH (t)〉 = Tr
(
ρ̂ ÔH (t)

)
= Tr

(
ρ̂ Û (t0, t)Ô Û(t, t0)

)

= Tr
(
ρ̂ Û†(t, t0)Ô Û(t, t0)

)
. (4.3)

This implies that first the system is evolved from t0 to t and then backward from
t to t0. This may be expressed as a time integral along the (Keldysh-)Contour or
Closed-Time-Path (CTP) [1–4] shown in Fig. 4.1. A time integration along the CPT
thus implies

∫
C

dt.. =
∫ t
t0

dt+..+
∫ t0
t

dt−.. =
∫ t
t0

dt+..−
∫ t
t0

dt−, (4.4)

thus picking up a minus sign for the lower branch when considering the interval
[t0, t].

Fig. 4.1 The Keldysh
contour for the time
integration in the Heisenberg
picture
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4.1.1 Two-Point Functions on the CTP

Now Green’s functions on the contour may have time arguments on the same branch
of the contour or on opposite branches. This gives four possibilities for the Green’s
functions defined—in case of a field theory with only scalar fields φ(x)—by

iGc(x, y) = iG++(x, y) = 〈 T̂ c(φ(x)φ(y)) 〉 (4.5)

iG<(x, y) = iG+−(x, y) = 〈φ(y)φ(x)〉 (4.6)

iG>(x, y) = iG−+(x, y) = 〈φ(x)φ(y)〉 (4.7)

iGa(x, y) = iG−−(x, y) = 〈 T̂ a(φ(x)φ(y)) 〉 , (4.8)

which are not independent! Here x = (x0, x) and y = (y0, y) denote space-time
four-vectors. The index +− means that x0 is on the upper branch and y0 on the
lower branch while −+ implies that x0 is on the lower branch and y0 on the upper
one. Time-ordering has to be fulfilled if both time arguments are on the same axis.
The causal time-ordering operator T c places fields at later times to the left while the
anticausal operator T a places fields at later times to the right. The Green’s functions
G> and G< are denoted as Wightman functions and will play the essential role in
the dynamical description of the system. One may also write the Green’s function
on the Keldysh contour in terms of a 2x2 matrix

G(x, y) =
⎛
⎝

+ −
+ Gc(x, y) G<(x, y)

− G>(x, y) Ga(x, y)

⎞
⎠ . (4.9)

Note that the Green’s functions defined in (4.5) to (4.8) are two-point functions, i.e.
they correspond to a single-particle species!

The further derivation again starts with a Dyson equation (cf. (C.7))

G(x, y) = G0(x, y)+ [G0�G](x, y) (4.10)

which is of one-body type and instead of G(x, y) we might write in shorthand
notationG(11′). The selfenergy�(x, y) = �(1, 1′) has the meaning of a one-body
mean-field potential (for bosons) and has the dimension [energy]2.

The relation to the one-body density matrix ρ in the previous chapter is given by

ρ(x, x′; t) ≡ −iG<(x, x′; t, t) (4.11)

since the time diagonal Green’s function can be identified with an integral over the
time difference τ − τ ′ (for t = (τ + τ ′)/2)

G<(x, x′; t) =
∫ ∞
−∞
d(τ − τ ′) G<(x, x′; τ, τ ′). (4.12)
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Arbitrary two-point functions F on the closed-time-path (CTP) generally can be
expressed by retarded and advanced components as

FR(x, y) = Fc(x, y)− F<(x, y) = F>(x, y)− Fa(x, y), (4.13)

FA(x, y) = Fc(x, y)− F>(x, y) = F<(x, y)− Fa(x, y) (4.14)

giving in particular the relation

FR(x, y)− FA(x, y) = F>(x, y)− F<(x, y). (4.15)

Note that the advanced and retarded components of the Green’s functions only
contain spectral and no statistical information,

GR/A(x, y) = G0 δ(t1 − t2)±�(±(t1 − t2)) [G>(x, y)−G<(x, y)]. (4.16)

4.1.2 The Dyson–Schwinger Equation on the CTP

The Dyson–Schwinger equation (4.10) on the closed-time-path reads in matrix
form:

(
Gc(x, y) G<(x, y)

G>(x, y) Ga(x, y)

)
=
(
Gc0(x, y) G

<
0 (x, y)

G>0 (x, y) G
a
0(x, y)

)

+
(
Gc0(x, x

′) G<0 (x, x ′)
G>0 (x, x

′) Ga0(x, x ′)

)

�
(

�c(x ′, y ′) −�<(x ′, y ′)
−�>(x ′, y ′) �a(x ′, y ′)

)
�
(
Gc(y ′, y) G<(y ′, y)
G>(y ′, y) Ga(y ′, y)

)
, (4.17)

where the symbol � stands for an intermediate integration over space-time on
the CTP, i.e. x ′ or y ′. The selfenergy � on the CPT is defined along (4.14) and
incorporates interactions of higher order. In lowest order �/2M is given by the
Hartree mean field but it follows a nonperturbative expansion in analogy to (2.154).

An example for this formal procedure may be given by the scalar φ4-theory
which is a laboratory for testing theoretical approximations. Its Lagrangian reads

L(x) = 1

2
∂xμφ(x)∂

μ
x φ(x)−

1

2
m2φ(x)2 − λ

4!φ
4(x) (4.18)

and incorporates a self-coupling of 4th order. In this (Bose) case the free propagator
is defined via the negative inverse Klein–Gordon operator in space-time representa-
tion

Ĝ−1
0x = −(∂xμ∂μx +m2), (4.19)
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which is a solution of the Klein–Gordon equation in the following sense:

Ĝ−1
0x

(
Gc0(x, y) G

<
0 (x, y)

G>0 (x, y) G
a
0(x, y)

)
= δ(x− y)

(
δ(x0 − y0) 0

0 −δ(x0 − y0)

)

= δ(x− y)δp(x0 − y0) ,

Ĝ−1
0x G

R/A
0 (x, y) = δ(x − y) , (4.20)

with δp denoting the δ-function on the CTP. In (4.19) m denotes the bare mass of
the scalar field.

4.1.3 Kadanoff–Baym Equations

To derive the Kadanoff–Baym equations one multiplies (4.17) with G−1
0x (4.19).

This gives four equations which can be cast into the form:

− (∂xμ∂μx +m2)GR/A(x, y) = δ(x−y)+�R/A(x, x ′)�GR/A(x ′, y), (4.21)

− (∂xμ∂μx +m2)G<(x, y) = �R(x, x ′)�G<(x ′, y)+�<(x, x ′)�GA(x ′, y),
(4.22)

− (∂xμ∂μx +m2)G>(x, y) = �R(x, x ′)�G>(x ′, y)+�>(x, x ′)�GA(x ′, y).
(4.23)

The propagation of the Green’s functions in the variable y is defined by the adjoint
equations:

− (∂yμ∂μy +m2)GR/A(x, y) = δ(x−y)+GR/A(x, x ′)��R/A(x ′, y), (4.24)

− (∂yμ∂μy +m2)G<(x, y) = GR(x, x ′)��<(x ′, y)+G<(x, x ′)��A(x ′, y),
(4.25)

− (∂yμ∂μy +m2)G>(x, y) = GR(x, x ′)��>(x ′, y)+G>(x, x ′)��A(x ′, y).
(4.26)

Note again that the evolution of the retarded/advanced Green’s functions only
depends on retarded/advanced quantities.

Exercise 4.1: Derive Eqs. (4.21)–(4.23) starting from (4.17).

4.1.4 Definition of Selfenergies

For the solution of the KB equations the computation/fixing of the selfenergies �
is mandatory. In the context of field theory the latter is extracted from the effective
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action (for neutral scalar fields [5, 6])


[G] = 
0[G0] + i
2
[ln(1−G0�)+G�] +�[G] (4.27)

assuming a vanishing vacuum expectation value 〈0|φ(x)|0〉. Here 
0[G0] only
depends on the free Green’s function and can be considered as constant in the
following. Note that all intermediate and final integrations have to be performed over
the CTP. In �[G] all closed two-particle irreducible (2PI) diagrams are included in
lowest (nontrivial) order.3 2PI diagrams are those that cannot be separated in two
disjunct diagrams by cutting two propagator lines; formally this implies that after
second order differentiation with respect to G no separate diagrams survive. The
functional�[G] plays a similar role as the potential energy density V(ρ) (2.168) in
the nonrelativistic case where the (nonrelativistic) selfenergy results from functional
derivation of V with respect to ρ, i.e. � = δV/δρ.

For the derivation of selfenergies one now considers the variation of the action

[G] with respect to G requiring δ
 = 0,

δ
 = 0 = i
2
� δG− i

2

G0

1−G0�
δ� + i

2
Gδ� + δ�

= i
2
� δG− i

2

1

G−1
0 −�︸ ︷︷ ︸
=G

δ� + i
2
Gδ� + δ� = i

2
� δG+ δ� . (4.28)

⇒ � = 2i
δ�

δG
= 2

δ�

δ(−iG) . (4.29)

Note that −iG< plays the role of the one-body density matrix in nonrelativistic
formulations at equal times. The selfenergies thus are obtained by opening of
a propagator-line in the irreducible diagrams �. Note that this definition of the
selfenergy preserves all conservation laws of the theory (as well as causality) and
does not introduce additional conserved currents. In principle the �-functional
includes irreducible diagrams up to infinite order, but here we will consider only
the contributions up to second order in the coupling (2PI). For our present purpose
this approximation is sufficient since we include the leading mean-field effects as
well as the leading order scattering processes that pave the way to thermalization.

3 In the previous sections this limit was denoted as Born approximation .
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Fig. 4.2 Contributions to the �-functional for the Kadanoff–Baym equation: two-loop contribu-
tion (l.h.s.) giving the tadpole selfenergy and three-loop contribution (r.h.s.) generating the sunset
selfenergy . The �-functional is built-up by full Green’s functions (double lines) while open dots
symbolize the integration over the inner coordinates

Fig. 4.3 Selfenergies of the Kadanoff–Baym equation: tadpole selfenergy (l.h.s.) and sunset
selfenergy (r.h.s.) for the φ4-theory. Since the lines represent full Green’s functions the selfenergies
are selfconsistent (see text) with the external coordinates indicated by full dots

4.1.5 Application to the Scalar φ4-Theory

The contributions up to the 3-loop order for the �-functional (cf. Fig. 4.2) read
explicitly for the φ4-theory

i� = iλ

8

∫
C
dd+1x G(x, x)2 − λ2

48

∫
C
dd+1x

∫
C
dd+1y G(x, y)4, (4.30)

where d here denotes the spatial dimension of the problem.

�(x, y) = 2i
δ�

δG(y, x)
= − iλ

2
G(x, x)− λ

2

6
G(x, y)G(x, y)G(y, x)

= −λ
2
iG(x, x)− λ

2

6
[G(x, y)]3

= �δpδ(x0 − y0)+ θp(x0 − y0)�
>(x, y)+ θp(y0 − x0)�

<(x, y),

(4.31)

with δp defined in (4.20) while θp is the Heavyside function on the CTP (taking care
about the sign on the upper (+) or lower (-) branch).

Within the 3-loop approximation for the 2PI effective action (i.e. the �-
functional (4.30)) we get two different selfenergies: In leading order of the coupling
constant only the tadpole diagram (l.h.s. of Fig. 4.3) contributes and leads to the
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generation of an effective mass (squared) for the field quanta. This selfenergy (in
coordinate space) is given by

�δ(x) = λ

2
i G<(x, x) , (4.32)

and is local in space and time. In next order in the coupling constant (i.e. λ2) the
nonlocal sunset selfenergy (r.h.s. of Fig. 4.3) enters the time evolution as

�>
<
(x, y) = −λ

2

6
G>
<
(x, y) G>

<
(x, y) G<

>
(y, x) (4.33)

−→ �>
<
(x, y) = −λ

2

6

[
G>
<
(x, y)

]3

. (4.34)

Thus the Kadanoff–Baym equation (4.22) in our case includes the influence of a
mean field on the particle propagation—generated by the tadpole diagram—as well
as scattering processes as inherent in the sunset diagram.

The Kadanoff–Baym equation (4.22) describes the full quantum nonequilibrium
time evolution on the two-point level for a system prepared at an initial time t0,
i.e. when higher order correlations are discarded. The causal structure of this initial
value problem is obvious since the time integrations are performed over the past up
to the actual time x0 (or y0, respectively) and do not extend to the future.

4.1.6 Homogeneous Systems in Space

In the following we will consider homogeneous systems in space. To obtain a
numerical solution the Kadanoff–Baym equation (4.22) is transformed to momen-
tum space in case of the φ4-theory:

∂2
t1
G<(p, t1, t2) = −[ p 2 +m2 + �̃δ(t1) ] G<(p, t1, t2) (4.35)

−
∫ t1
t0

dt ′
[
�>(p, t1, t ′)−�<(p, t1, t ′)

]
G<(p, t ′, t2)

+
∫ t2
t0

dt ′ �<(p, t1, t ′)
[
G>(p, t ′, t2)−G<(p, t ′, t2)

]

= −[ p 2 +m2 + �̃δ(t1) ] G<(p, t1, t2) + I<1 (p, t1, t2),
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where both memory integrals are summarized in the function I<1 . The equation of
motion in the second time direction t2 is given analogously. In two-time, momentum
space (p, t, t ′) representation the selfenergies read

�̃δ(t) = λ
2

∫
ddp

(2π)d
i G<(p, t, t) , (4.36)

�>
<
(p, t, t ′) = −λ

2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G>
<
(q, t, t ′)

×G><(r, t, t ′) G<>(q+r−p, t ′, t) .

= −λ
2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G>
<
(q, t, t ′)

×G><(r, t, t ′) G><(p−q−r, t, t ′) .

By insertion of (4.36) in Eq. (4.35) we get for the collision term:

I<1 (p, t1, t2) (4.37)

= +
∫ t1
t0

dt ′ λ
2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G>(q, t1, t ′) G>(r, t1, t ′)

×G<(q+r−p, t ′, t1) G<(p, t ′, t2)

−
∫ t2
t0

dt ′ λ
2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G<(q, t1, t ′) G<(r, t1, t ′)

×G>(q+r−p, t ′, t1) G>(p, t ′, t2)

+
∫ t2
t0

dt ′ λ
2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G<(q, t1, t ′) G<(r, t1, t ′)

×G>(q+r−p, t ′, t1) G<(p, t ′, t2)

−
∫ t1
t0

dt ′
λ2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G<(q, t1, t ′) G<(r, t1, t ′)

×G>(q+r−p, t ′, t1) G<(p, t ′, t2),

which apart from ’2↔ 2’ processes also involves ’1↔ 3’ processes which are not
allowed by energy conservation in an on-shell collision term for massive particles!
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For the solution of the Kadanoff–Baym equations (4.35) a flexible and accurate
algorithm works as follows: Instead of solving the second order differential equation
(4.35) one can generate a set of first-order differential equations for the Green’s
functions in the Heisenberg picture,

i G<φφ(x1, x2) = 〈φ(x2) φ(x1)〉 = i G<(x1, x2) , (4.38)

i G<πφ(x1, x2) = 〈φ(x2) π(x1)〉 = ∂t1 i G
<
φφ(x1, x2) ,

i G<φπ (x1, x2) = 〈π(x2) φ(x1)〉 = ∂t2 i G
<
φφ(x1, x2) ,

i G<ππ(x1, x2) = 〈π(x2) π(x1)〉 = ∂t1 ∂t2 i G<φφ(x1, x2) ,

with the canonical field momentum π(x) = ∂x0φ(x). The first index π or φ
is always related to the first space-time argument. Exploiting the time-reflection
symmetry of the Green’s functions some of the differential equations are redundant.
The required equations of motion are given as [7]

∂t1 G
<
φφ(p, t1, t2) = G<πφ(p, t1, t2) , (4.39)

∂t̃ G
<
φφ(p, t̃ , t̃ ) = 2 i � {G<πφ(p, t̃ , t̃ ) } ,

∂t1 G
<
πφ(p, t1, t2) = −�2(t1) G

<
φφ(p, t1, t2) + I<1 (p, t1, t2) ,

∂t2 G
<
πφ(p, t1, t2) = G<ππ(p, t1, t2) ,

∂t̃ G
<
πφ(p, t̃ , t̃ ) = −�2(t̃ ) G<φφ(p, t̃ , t̃ ) + G<ππ(p, t̃ , t̃ ) + I<1 (p, t̃ , t̃) ,

∂t1 G
<
ππ (p, t1, t2) = −�2(t1) G

<
φπ (p, t1, t2) + I<1,2(p, t1, t2) ,

∂t̃ G
<
ππ(p, t̃ , t̃ ) = −�2(t̃ ) 2 i � {G<πφ(p, t̃ , t̃ ) } + 2 i � { I<1,2(p, t̃ , t̃ ) } ,

where t̃ = (t1 + t2)/2 is the mean time variable. Thus one explicitly considers
the propagation in the time diagonal. In the equations of motion (4.39) the current
(renormalized) effective energy including the time dependent tadpole contribution
enters,

�2(t) = p 2 + m2 + δm2
tad + δm2

sun + �̄δ(t), (4.40)
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with the counterterms δm2
tad and δm2

sun.
4 The evolution in the t2 direction has not

to be taken into account for G<φφ and G<ππ since the Green’s functions beyond
the time diagonal (t2 > t1) are determined via the time-reflection symmetry,
e.g. G<φφ(p, t1, t2) = −[G<φφ(p, t2, t1) ]∗, from the known values for the lower
time triangle in both cases. Since there is no time-reflection symmetry for the
Gπφ functions, they have to be calculated (and stored) in the whole t1, t2 range.
However, we can ignore the evolution of Gφπ since it is obtained by the relation
G<φπ (p, t1, t2) = −[G<πφ(p, t2, t1) ]∗. The correlation integrals in (4.39) are given
by

I<1 (p, t1, t2) = −
∫ t1

0
dt ′

[
�>(p, t1, t ′)−�<(p, t1, t ′)

]
G<φφ(p, t

′, t2) (4.41)

+
∫ t2

0
dt ′ �<(p, t1, t ′)

[
G<φφ(−p, t2, t ′)−G<φφ(p, t ′, t2)

]
,

I<1,2(p, t1, t2) ≡ ∂t2I
<
1 (p, t1, t2) (4.42)

= −
∫ t1

0
dt ′

[
�>(p, t1, t ′)−�<(p, t1, t ′)

]
G<φπ (p, t

′, t2)

+
∫ t2

0
dt ′ �<(p, t1, t ′)

[
G<πφ(−p, t2, t ′)−G<φπ (p, t ′, t2)

]
.

In (4.39) and (4.42) one can replace G<φπ(p, t1, t2) = −[G<πφ(p, t2, t1) ]∗ such that
the set of equations is closed in the Green’s functionsG<φφ , G<πφ and G<ππ .

The disadvantage, to integrate more Green’s functions in time in this first-
order scheme, is compensated by its good accuracy. As mentioned before, we
especially take into account the propagation along the time diagonal which leads
to an improved numerical precision. The set of differential equations (4.39) is
solved by means of a 4th order Runge–Kutta algorithm. For the calculation of
the selfenergies a Fast-Fourier transformation method is applied. The selfenergies
(4.36), furthermore, are calculated in coordinate space—where they are products of
coordinate-space Green’s functions (that are available by Fourier transformation)—
and finally transformed to momentum space.

In order to obtain a solution of the KB equations some initial conditions for
iG<(p, t = 0, t = 0) have to be specified. The corresponding initial distribution
functions in the occupation density n(p, t = 0), related to iG<(p, t = 0, t = 0) by

2ωpiG
<(p, t = 0, t = 0) = 2n(p, t = 0)+ 1 (4.43)

4 The explicit form of the counterterms are not of relevance here. They are specified in detail in
Ref. [7].
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Fig. 4.4 Initial Green’s functions iG<(| �p |, t = 0, t = 0) (l.h.s.) and corresponding initial
distribution functions n(| �p |, t = 0) (r.h.s.) for the distributions D1, D2, D3, and DT in momentum
space (for a cut of the polar symmetric distribution in px direction for py = 0)

follow immediately. To this aim we consider four different initial distributions
that are all characterized by the same energy density. Consequently, for large
times (→ ∞) all initial value problems should lead to the same equilibrium final
state. The initial equal-time Green’s functions iG<(p, t = 0, t = 0) adopted are
displayed in Fig. 4.4 (l.h.s.) as a function of the momentum pz. We concentrate
on polar symmetric configurations due to the large numerical expense for this
exploratory investigation. Since the equal-time Green’s functions G<(p, t, t, ) are
purely imaginary we show only the real part of i G< in Fig. 4.4.

Since we consider a finite volume in two dimensions (V = a2) we work in a
basis of momentum modes characterized by the number of nodes in each direction.
The number of momentum modes is typically in the order of 40 which is found to
be sufficient for numerically stable results. For times t < 0 we consider the systems
to be non-interacting and switch on the interaction (∼ λ) for t=0 to explore the
quantum dynamics of the interacting system for t > 0.

4.1.7 The Spectral Function

The spectral function of the fields φ is of particular interest since it follows from the
field commutator at unequal times and reflects the quantization of the theory. For
scalar, symmetric fields φ it is given by

A(x, y)=〈 [φ(x), φ(y)]− 〉= i[G>(x, y)−G<(x, y)]= i[GR(x, y)−GA(x, y)]
(4.44)
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Fig. 4.5 The imaginary part of the retarded Green’s function as a function of t1 − t2 and the
average time (t1 + t2)/2 for φ4-theory in strong coupling as emerging from the Kadanoff–Baym
approach

or in momentum-time representation as

A(p, t1, t2) = i[G<(p, t2, t1)−G<(p, t1, t2)] (4.45)

= i [−[G<(p, t1, t2)]∗ −G<(p, t1, t2)]
= −2i� (G<(p, t1, t2)) .

The quantity (4.45) is displayed in Fig. 4.5 as a function of �t = t1 − t2 and t =
(t1 + t2)/2 for a low lying momentum mode in case of the φ4-theory for strong
coupling λ. We observe a damped oscillation in �t = t1 − t2 in all cases with
characteristic time scale 1/
 which practically does not depend on the average time
t = (t1 + t2)/2. This pattern is very similar for all momentum modes.

The spectral function in energy-momentum representation is obtained by Fourier
transformation with respect to the time difference �t = (t1 − t2) for each average
time t :

Ã(p, p0, t) =
∫ ∞
−∞
d�t exp(i�t p0)A(p, t1 = t +�t/2, t2 = t −�t/2) ,

(4.46)
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where Ā stands for the full spectral function. Since the spectral function essentially
shows a damped oscillation (cf. Fig. 4.5) this implies that the Fourier transform
(4.46) is of relativistic Breit–Wigner shape with a width 
 (see below).

We note, that a damping of the function A(p, t1, t2) in relative time �t
corresponds to a finite width 
 of the spectral function in Wigner space. This width
in turn can be interpreted as the inverse life time of the interacting scalar particle.
We recall, that the spectral function —for all times T ≡ t and for all momenta
p—obeys the normalization

∫ ∞
−∞

dp0

2π
p0 A(p, p0, T ) = 1 ∀ p, T (4.47)

which is nothing but a reformulation of the equal-time commutation relation.
In Fig. 4.65 we display the time evolution of the spectral function for the initial

distributions D1, D2, and DT for two different momentum modes | p |/m = 0.0
and | p |/m = 2.0. Since the spectral functions are antisymmetric in energy
for the momentum symmetric configurations considered, i.e. A(p,−p0, T ) =
−A(p, p0, T ), we only show the positive energy part. For our initial value problem
in two-times and space the Fourier transformation is restricted for system times T
to an interval �t ∈ [−2T , 2T ]. Thus in the very early phase the spectral function
assumes a finite width already due to the limited support of the Fourier transform in
the interval �t ∈ [−2T , 2T ] and a Wigner representation is not very meaningful.
We, therefore, present the spectral functions for various system times T ≡ t starting
from t ·m = 15 up to t ·m = 480.

For the free thermal initialization DT the evolution of the spectral function is very
smooth. In this case the spectral function is already close to the equilibrium shape at
small times being initially only slightly broader than for late times. The maximum
of the spectral function (for all momenta) is higher than the (bare) on-shell value
and nearly keeps its position during the whole time evolution. This results from a
positive tadpole mass shift, which is only partly compensated by a downward shift
originating from the sunset diagram.

The time evolution for the initial distributions D1, D2, and D3 has a richer
structure. For the distribution D1 the spectral function is broad for small system
times (see the line for t · m = 15) and becomes a little sharper in the course of the
time evolution (as presented for the momentum mode | p |/m = 0.0 as well as for
| p |/m = 2.0). In line with the decrease in width the height of the spectral function
is increasing (as demanded by the normalization property (4.47)). This is indicated
by the small arrow close to the peak position. Furthermore, the maximum of the
spectral function (which is approximately the on-shell energy ) is shifted slightly
upwards for the zero mode and downwards for the mode with higher momentum.
Although the real part of the (retarded) sunset selfenergy leads (in general) to a
lowering of the effective mass, the on-shell energy of the momentum modes is still

5 The figures in this section are taken from Ref. [7].
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Fig. 4.6 Time evolution of the spectral function A(p, p0, t) for the initial distributions D1, D2,
D3, and DT (from top to bottom) for the two momenta | p |/m = 0.0 (l.h.s.) and | p |/m = 2.0
(r.h.s.). The spectral function is shown for several times t · m = 15, 30, 60, 120, 240, 360, 480 as
indicated by the different line types
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higher than the one for the initial mass m (indicated by the ‘on-shell’ arrow) due to
the positive mass shift from the tadpole contribution.

For the initial distribution D3 we find the opposite behavior. Here the spectral
function is quite narrow for early times and increasing its width during the time
evolution. Correspondingly, the height of the spectral function decreases with time.
This behavior is observed for the zero momentum mode | p |/m = 0.0 as well as
for the finite momentum mode | p |/m = 2.0. Especially in the latter case the width
for early times is so small that the spectral function shows oscillations originating
from the finite range of the Fourier transformation from relative time to energy.
Although we have already increased the system time for the first curve to t ·m = 21
(for t · m = 15 the oscillations are much stronger) the spectral function is not
fully resolved, i.e. it is not sufficiently damped in relative time �t in the interval
available for the Fourier transform. For later times the oscillations vanish and the
spectral function tends to the common equilibrium shape. The time evolution of the
spectral function for the initial distribution D2 is somehow in between the last two
cases. Here the spectral function develops (at intermediate times) a slightly higher
width than in the beginning before it is approaching the narrower static shape again.
The corresponding evolution of the maximum is again indicated by the (bent) arrow.
Finally, all spectral functions show the (same) equilibrium form represented by the
solid gray line.

One has to emphasize that there is no unique time evolution for the nonequilib-
rium systems. In fact, the evolution of the system during the equilibration process
depends on the initial conditions. On the other hand, the time dependence of the
spectral function is only moderate such that one might also work with some time-
averaged or even the equilibrium spectral function. In order to investigate this issue
in more quantitative detail we concentrate on the maxima and widths of the spectral
functions in the following.

Since the solution of the Kadanoff–Baym equation provides the full spectral
information for all system times the evolution of the on-shell energies can be
studied as well as the spectral widths. In Fig. 4.7 we display the time dependence

Fig. 4.7 Time evolution of the on-shell energies ε(p, t) of the momentum modes | p |/m = 0.8
and | p |/m = 2.0 for the different initializations D1, D2, D3 and DT. The on-shell selfenergies are
extracted from the maxima of the time-dependent spectral functions
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of the on-shell energies ε(p, t) of the momentum modes | p |/m = 0.8 (l.h.s.) and
| p |/m = 2.0 (r.h.s.) for the four initial distributions D1, D2, D3, and DT. We
see that the on-shell energy for the zero momentum mode increases with time for
the initial distribution D1 and to a certain extent for the free thermal distribution
DT (as can be also extracted form Fig. 4.6). The on-shell energy of distribution D3
shows a monotonic decrease during the evolution while it passes through a minimum
for distribution D2 before joining the line for the initialization D1. For momentum
| p |/m = 2.0 a rather opposite behavior is observed. Here the on-shell energy for
distribution D1 (and less pronounced for the distribution DT) are reduced in time
whereas it is increased in the case of D3. The result for the initialization D2 is
monotonous for this mode and matches the one for D1 already for moderate times.
Thus we find, that the time evolution of the on-shell energies does not only depend
on the initial conditions, but might also be different for various momentum modes.
It turns out—for the initial distributions investigated—that the above described
characteristics change around | p |/m = 1.5 and are retained for larger momenta
(not presented here).

Furthermore, we show in Fig. 4.8 the time evolution of the on-shell width for the
usual momentum modes for the different initial distributions. The on-shell width

 is given by the imaginary part of the retarded sunset selfenergy at the on-shell
energy of each respective momentum mode as


 = −2 Im�R(p, ε(p, t), t) / 2 ε(p, t). (4.48)

As already discussed in connection with Fig. 4.6 we observe for both momentum
modes a strong decrease of the on-shell width for the initial distribution D1
associated with a narrowing of the spectral function. In contrast, the on-shell widths
of distribution D3 increase with time such that the corresponding spectral functions
broaden towards the common static shape. For the initialization D2 we observe a
non-monotonic evolution of the on-shell widths connected with a broadening of the

Fig. 4.8 Time evolution of the on-shell widths −2 Im�R(p, ε(p, t), t)/2 ε(p, t) of the momen-
tum modes | p |/m = 0.8 and | p |/m = 2.0 for the different initializations D1, D2, D3, and DT
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spectral function at intermediate times. Similar to the case of the on-shell energies
we find, that the results for the on-shell widths of the distributions D1 and D2
coincide well above a certain system time. As expected from the lower plots of
Fig. 4.6 the on-shell width for the free thermal distribution DT exhibits only a weak
time dependence with a slight decrease in the initial phase of the time evolution.

In summary, there is no universal time evolution of the spectral functions for
the initial distributions considered. Peak positions and widths depend on the initial
configuration and evolve differently in time. However, we find only effects in the
order of <10% for the on-shell energies in the initial phase of the system evolution
and initial variations of <50% for the widths of the dominant momentum modes.
Thus, depending on the physics problem of interest, one might discard an explicit
time dependence of the spectral functions and adopt the equilibrium shape.

4.1.8 Results in First-Order Gradient Expansion

In first order in the gradient expansion the retarded and advanced Green’s functions
can be written as

G̃R/A = �
(
G̃R
)
± i �

(
G̃R
)
= �

(
G̃R
)
∓ i Ã/2,

�̃R/A = �
(
�̃R
)
± i �

(
�̃R
)
= �

(
�̃R
)
∓ i 
̃/2. (4.49)

Rewriting the imaginary part of the selfenergy we get

Ã(p, p0, t) = 
̃(
p2

0 − ω2
0

)2 + 
̃2/4
,


̃ = −2�
(
�̄R
)
= 4p0γ,

ω2
0 = p2 +m2 − �̄δ +�

(
�̄R
)
, (4.50)

which is of relativistic Breit–Wigner form. Its normalization is given by

∫ ∞
−∞

dp0

2π
p0Ã(p, p0, t) = 1 (4.51)

and reflects the quantization condition for the interacting field φ.
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4.1.9 The EquilibriumDistribution

Now we introduce the energy- and momentum-dependent distribution function
N(p, p0, t̃ ) at any system time t̃ by the definition

i G<(p, p0, t̃ ) = A(p, p0, t̃ ) N(p, p0, t̃) ,

i G>(p, p0, t̃ ) = A(p, p0, t̃ ) [N(p, p0, t̃)+ 1 ] , (4.52)

since G<(p, p0, t̃ ) and G>(p, p0, t̃ ) are known from the integration of the
Kadanoff–Baym equations as well as A(p, p0, t̃ ).

In equilibrium (at temperature T ) the Green’s functions obey the Kubo–Martin–
Schwinger (KMS) relation for all momenta p,

G>eq(p, p0) = ep0/T G<eq(p, p0) ∀ p . (4.53)

If there exists a conserved quantum number in the theory we have, furthermore,
a contribution of the corresponding chemical potential in the exponential function
which leads to a shift of arguments: p0/T → (p0 − μ)/T . In the present case,
however, there is no conserved quantum number and thus the equilibrium state has
the chemical potential μ = 0.

From the KMS condition of the Green’s functions (4.53) we obtain the equilib-
rium form of the distribution function (4.52) at temperature T as

Neq(p, p0) = Neq(p0) = 1

ep0/T − 1
= Nbose(p0/T ) , (4.54)

from

G<

G>
= e−p0/T = Neq

Neq + 1
,

which is the well-known Bose distribution. As is obvious from (4.54) the equilib-
rium distribution can only be a function of energy p0 and not of the momentum
variable p in addition.

In Fig. 4.9 (lower part) we present the spectral function A(p, p0) for the initial
distribution D2 at late times t̃ · m = 540 for various momentum modes |p|/m =
0.0, 0.8, 1.6, 2.4, 3.2, 4.0 as a function of the energy p0. We note, that for all other
initial distributions—with equal energy density—the spectral function looks very
similar at this time since the systems proceed to the same stationary state. We
recognize that the spectral function is quite broad, especially for the low momentum
modes, while for the higher momentum modes its width is slightly lower.

The distribution function N(p0) as extracted from (4.52) is displayed in Fig. 4.9
(upper part) for the same momentum modes as a function of the energy p0. We
find that N(p0) for all momentum modes can be fitted by a single Bose function
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Fig. 4.9 Spectral function
A(p0) for various momentum
modes | p |/m=
0.0, 0.8, 1.6, 2.4, 3.2, 4.0 as a
function of energy for late
times t ·m = 540 (lower
part). The corresponding
distribution function N(p0) at
the same time for the same
momentum modes is
displayed in the upper part.
All momentum modes can be
fitted with a single Bose
function of temperature
Teq/m = 1.836 and a
chemical potential close to
zero

with temperature T/m = 1.836. Thus the distribution function emerging from the
Kadanoff–Baym time evolution for t → ∞ approaches a Bose function in the
energy that is independent of the momentum as demanded by the equilibrium form
(4.54). Figure 4.9 (upper part) demonstrates, furthermore, that the KMS condition is
fulfilled not only for on-shell energies, but for all p0. We, therefore, have obtained
the full off-shell equilibrium state by integrating the Kadanoff–Baym equations in
time. In addition, the limiting stationary state is the correct equilibrium state for all
energies p0, i.e. also away from the quasiparticle energies.

4.2 Full Versus Approximate Dynamics

The Kadanoff–Baym equations studied in the previous section represent the full
quantum-field theoretical equations on the single-particle level. However, its numer-
ical solution is quite involved and it is of strong interest to investigate, in how
far approximate schemes deviate from the full calculation. Nowadays, transport
models are widely used in the description of quantum systems out-of equilibrium.
Most of these models work in the “quasiparticle” picture, where all particles obey
a fixed energy-momentum relation and the energy is no independent degree of



4.2 Full Versus Approximate Dynamics 123

freedom anymore; it is determined by the momentum and the (effective) mass of the
particle (cf. Chaps. 2 and 3). Accordingly, these particles are treated with their δ-
function spectral shape as infinitely long living, i.e. stable objects. This assumption
is very questionable e.g. for high-energy heavy-ion reactions, where the particles
achieve a large width due to the frequent collisions with other particles in the
high-density and/or high-energy regime. Furthermore, this is doubtful for particles
that are unstable even in the vacuum. The question, in how far the quasiparticle
approximation influences the dynamics in comparison to the full Kadanoff–Baym
calculation, is of widespread interest.

4.2.1 Derivation of the Quantum Boltzmann Approximation

In the following we will present a short derivation of the quantum Boltzmann
equation starting directly from the Kadanoff–Baym dynamics in the two-time and
momentum-space representation. This derivation is briefly reviewed since we want
(1) to emphasize the link of the full Kadanoff–Baym equation with its approximated
version and (2) to clarify the assumptions that enter the Boltzmann equation .

Since the Boltzmann equation describes the time evolution of distribution
functions for quasiparticles we first consider the quasiparticle Green’s functions in
two-time representation for homogeneous systems

G>
<
φφ,qp(p, t, t

′) = −i
2ωp
{ Nqp(∓p) exp(±iωp(t − t ′)) (4.55)

+[Nqp(±p)+1 ] exp(∓iωp(t − t ′)) }

G>
<
φπ,qp(p, t, t

′) = 1

2
{ ∓Nqp(∓p) exp(±iωp(t − t ′))
±[Nqp(±p)+1 ] exp(∓iωp(t − t ′)) }

G>
<
πφ,qp(p, t, t

′) = 1

2
{ ±Nqp(∓p) exp(±iωp(t − t ′))
∓[Nqp(±p)+1 ] exp(∓iωp(t − t ′)) }

G>
<
ππ,qp(p, t, t

′) = −i ωp

2
{ Nqp(∓p) exp(±iωp(t − t ′))

+[Nqp(±p)+1 ] exp(∓iωp(t − t ′)) }

where for each momentum p the Green’s functions are freely oscillating in relative
time t−t ′ with the on-shell energyωp. The time-dependent quasiparticle distribution
functions are given with the energy variable fixed to the on-shell energy as
Nqp(p, t̃ ) ≡ N(p, p0 = ωp, t̃ ), where the on-shell energies ωp can depend on time
as well. Such a time variation e.g. might be due to an effective mass as generated by
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the time-dependent tadpole selfenergy . In this case the on-shell energy reads

ωp(t̃ ) =
√

p 2 +m2 + �̄δren(t̃ ). (4.56)

Vice versa we can define the quasiparticle distribution function by means of the
quasiparticle Green’s functions at equal times t̃ as

Nqp(p, t̃ ) =
[
ωp(t̃)

2
i G<φφ,qp(p, t̃ , t̃ ) +

1

2ωp(t̃ )
i G<ππ,qp(p, t̃ , t̃ )

]
(4.57)

− 1

2

[
G<πφ,qp(p, t̃ , t̃ ) − G<φπ,qp(p, t̃ , t̃)

]
.

Using the equations of motions for the Green’s functions in diagonal time direction
(4.39) (exploiting G<φπ(p, t̃ , t̃ ) = −[G<πφ(p, t̃ , t̃ ) ]∗) the time evolution of the
distribution function is given by

∂t̃ Nqp(p, t̃ ) = −�
{
I<1 ; qp(p, t̃ , t̃ )

}
− 1

ωp(t̃)
�
{
I<1,2 ; qp(p, t̃ , t̃)

}
. (4.58)

The time derivatives of the on-shell energies cancel out since the quasiparticle
Green’s functions obey

G<ππ (p, t̃ , t̃) = ω2
p(t̃) G

<
φφ(p, t̃ , t̃ ) (4.59)

as seen from (4.55). Furthermore, it is remarkable that contributions containing the
energy ω2

p—as present in the equation of motion for the Green’s functions (4.39)—
no longer show up. The time evolution of the distribution function is entirely
determined by (equal-time) collision integrals containing (time derivatives of the)
Green’s functions and selfenergies.

I<1;qp(p, t̃ , t̃ ) =
∫ t̃
t0

dt ′
(
�<qp(p, t̃ , t

′) G>φφ,qp(p, t ′, t̃ )

−�>qp(p, t̃ , t ′) G<φφ,qp(p, t ′, t̃ )
)
,

I<1,2;qp(p, t̃ , t̃ ) =
∫ t̃
t0

dt ′
(
�<qp(p, t̃ , t

′) G>φπ,qp(p, t ′, t̃ ) (4.60)

−�>qp(p, t̃ , t ′) G<φπ,qp(p, t ′, t̃ )
)
.

Since we are dealing with a system of on-shell quasiparticles within the Boltzmann
approximation, the Green’s functions in the collision integrals (4.60) are given
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by the respective quasiparticle quantities of (4.55). Moreover, the collisional
selfenergies (4.36) are obtained in accordance with the quasiparticle approximation
as

�>
<

qp(p, t, t
′) = −i λ

2

6

∫
ddq

(2π)d

∫
ddk

(2π)d

∫
dd l

(2π)d
(2π)d δ(d)(p−q−k−l)

1

2ωq 2ωk 2ωl{
Nqp(∓q)Nqp(∓k)Nqp(∓l) exp(+i [ t − t ′ ] [±ωq ± ωk ± ωl ])

+ 3Nqp(∓q)Nqp(∓k)[Nqp(±l)+1 ] exp(+i [ t − t ′ ] [±ωq ± ωk ∓ ωl ])
+ 3Nqp(∓q)[Nqp(±k)+1 ][Nqp(±l)+1 ] exp(+i [ t − t ′ ] [±ωq ∓ ωk ∓ ωl ])

+[Nqp(±q)+1 ][Nqp(±k)+1 ][Nqp(±l)+1 ] exp(+i [ t − t ′ ] [∓ωq ∓ ωk ∓ ωl ])
}
.

(4.61)

For a free theory the distribution functions Nqp(p) are obviously constant in time
which, of course, is no longer valid for an interacting system out-of equilibrium .
Thus one has to specify the above expressions for the quasiparticle Green’s functions
(4.55) to account for the time dependence of the distribution functions.

The quantum Boltzmann approximation is defined in the limit, that the distribu-
tion functions have to be taken always at the latest time argument of the two-time
Green’s function . Accordingly, for the general nonequilibrium case, we introduce
the ansatz for the Green’s functions in the collision term

G>
<
φφ,qp(p, t, t

′) = −i
2ωp

{ Nqp(∓p, tmax) exp(±iωp(t − t ′)) (4.62)

+ [Nqp(±p, tmax)+1 ] exp(∓iωp(t − t ′)) }

G>
<
φπ,qp(p, t, t

′) = 1

2
{ ∓Nqp(∓p, tmax) exp(±iωp(t − t ′))

± [Nqp(±p, tmax)+1 ] exp(∓iωp(t − t ′)) },

with the maximum time tmax = max(t, t ′). The same ansatz is employed for the
time-dependent on-shell energies which enter the representation of the quasiparticle
two-time Green’s functions (4.62) with their value at tmax , i.e. ωp = ωp(tmax =
max(t, t ′)).
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The collision term contains a time integration which extends from an initial time
t0 to the current time t̃ . All two-time Green’s functions and selfenergies depend on
the current time t̃ as well as on the integration time t ′ ≤ t̃ . Thus only distribution
functions at the current time, i.e. the maximum time of all appearing two-time
functions, enter the collision integrals and the evolution equation for the distribution
function becomes local in time. Since the distribution functions are given at fixed
time t̃ , they can be taken out of the time integral. When inserting the expressions
for the selfenergies and the Green’s functions in the collision integrals the evolution
equation for the quasiparticle distribution function reads

∂t̃ Nqp(p, t̃ ) =
λ2

3

∫
ddq

(2π)d

∫
ddk

(2π)d

∫
ddl

(2π)d

(2π)d δ(d)(p−q−k−l)
1

2ωp 2ωq 2ωk 2ωl
(4.63)

{
[N̄p,t̃N̄−q,t̃N̄−k,t̃N̄−l,t̃ −Np,t̃N−q,t̃N−k,t̃N−l,t̃]

∫ t̃
t0

dt ′ cos([ t̃−t ′ ] [ωp+ωq+ωk+ωl ])

+3 [N̄p,t̃N̄−q,t̃N̄−k,t̃ Nl,t̃ − Np,t̃N−q,t̃N−k,t̃ N̄l,t̃ ]
∫ t̃
t0

dt ′ cos([ t̃−t ′ ] [ωp+ωq+ωk−ωl ])

+3 [N̄p,t̃N̄−q,t̃ Nk,t̃ Nl,t̃ − Np,t̃N−q,t̃ N̄k,t̃ N̄l,t̃ ]
∫ t̃
t0

dt ′ cos([ t̃−t ′ ] [ωp+ωq−ωk−ωl ])

+ [N̄p,t̃ Nq,t̃ Nk,t̃ Nl,t̃ − Np,t̃ N̄q,t̃ N̄k,t̃ N̄l,t̃ ]
∫ t̃
t0

dt ′ cos([ t̃−t ′ ] [ωp−ωq−ωk−ωl ])
}
,

where we have introduced the abbreviation Np,t̃ = Nqp(p, t̃ ) for the distribution
function at current time t̃ and N̄p,t̃ = Nqp(p, t̃ ) + 1 for the according Bose factor.
Furthermore, a possible time dependence of the on-shell energies is suppressed in
the above notation.

The contributions in the collision term (4.63) for particles of momentum p are
ordered as they describe different types of scattering processes where, however, we
always find the typical gain and loss structure. The first line in (4.63) corresponds
to the production and annihilation of four on-shell particles (0→ 4, 4→ 0), where
a particle of momentum p is produced or destroyed simultaneous with three other
particles with momenta q,k, l. The second line and the fourth line describe (1→ 3)
and (3 → 1) processes where the quasiparticle with momentum p is the single
one or appears with two other particles. The relevant contribution in the Boltzmann
limit is the third line which represents (2→ 2) scattering processes; quasiparticles
with momentum p can be scattered out of their momentum cell by collisions with
particles of momenta q (second term) or can be produced within a reaction of on-
shell particles with momenta k, l (first term).
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The time evolution of the quasiparticle distribution is given as an initial value
problem for the function Nqp(p) prepared at initial time t0. For large system times
t̃ (compared to the initial time) the time integration over the trigonometric function
results in an energy conserving δ-function:6

lim
t̃−t0→∞

∫ t̃
t0

dt ′ cos((t̃ − t ′) ω̂) = lim
t̃−t0→∞

1

ω̂
sin((t̃ − t0) ω̂) = π δ(ω̂) . (4.64)

Here ω̂ = ωp ± ωq ± ωk ± ωl represents the energy sum which is conserved in the
limit t̃ − t0 → ∞ where the initial time t0 is considered as fixed. In this limit the
time evolution of the distribution function amounts to

∂t̃ Nqp(p, t̃ ) =
λ2

6

∫
ddq

(2π)d

∫
ddk

(2π)d

∫
dd l

(2π)d
(2π)d+1 1

2ωp 2ωq 2ωk 2ωl
(4.65)

{
[ N̄p,t̃ N̄q,t̃ N̄k,t̃ N̄l,t̃ − Np,t̃ Nq,t̃ Nk,t̃ Nl,t̃ ] δ(d)(p+q+k+l) δ(ωp+ωq+ωk+ωl)

+3[ N̄p,t̃ N̄q,t̃ N̄k,t̃ Nl,t̃ − Np,t̃ Nq,t̃ Nk,t̃ N̄l,t̃ ] δ(d)(p+q+k−l) δ(ωp+ωq+ωk−ωl)

+3[ N̄p,t̃ N̄q,t̃ Nk,t̃ Nl,t̃ − Np,t̃ Nq,t̃ N̄k,t̃ N̄l,t̃ ] δ(d)(p+q−k−l) δ(ωp+ωq−ωk−ωl)

+ [ N̄p,t̃ Nq,t̃ Nk,t̃ Nl,t̃ − Np,t̃ N̄q,t̃ N̄k,t̃ N̄l,t̃ ] δ(d)(p−q−k−l) δ(ωp−ωq−ωk−ωl)

}
.

In the energy conserving long-time limit (4.64) only the 2→ 2 scattering processes
are nonvanishing, because all other terms do not contribute since the energy δ-
functions cannot be fulfilled for massive on-shell quasiparticles. Furthermore, the
system evolution is explicitly local in time because it depends only on the current
configuration; there are no memory effects from the integration over past times as
present in the full Kadanoff–Baym equation.

In the following we will solve the energy conserving Boltzmann equation for
on-shell particles:

∂t̃ Nqp(p, t̃ ) =
λ2

2

∫
ddq

(2π)d

∫
ddk

(2π)d

∫
ddl

(2π)d
(2π)d+1 1

2ωp 2ωq 2ωk 2ωl
(4.66)

[ N̄p,t̃ N̄q,t̃ Nk,t̃ Nl,t̃ − Np,t̃ Nq,t̃ N̄k,t̃ N̄l,t̃ ]
× δ(d)(p+q−k−l) δ(ωp+ωq−ωk−ωl) .

6 This is equivalent to Eq. (2.115).



128 4 Relativistic Dynamics and Off-Shell Transport

The numerical algorithm employed for the solution of (4.66) is basically the same
as for the solution of the Kadanoff–Baym equation. We explicitly calculate the time
integral in (4.63). Energy conservation can be assured by a precalculation including
a shift of the lower boundary t0 to earlier times. We note that in contrast to the
Kadanoff–Baym equation no correlation energy is generated in the Boltzmann limit!

In addition to the procedure presented above we calculate the actual momentum-
dependent on-shell energy for every momentum mode by a solution of the dispersion
relation including contributions from the tadpole and the real part of the (retarded)
sunset selfenergy . In this way one can guarantee that at every time t the particles
are treated as quasiparticles with the correct energy-momentum relation.

Before presenting the actual numerical results we comment on the derivation
of the Boltzmann equation within the conventional scheme that is different from
the one presented above. Here, at first the Kadanoff–Baym equation (in coordinate
space) is transformed to the Wigner representation by Fourier transformation with
respect to the relative coordinates in space and time. The problem then is formulated
in terms of energy and momentum variables together with a single system time.
For non-homogeneous systems a mean spatial coordinate is necessary as well.
As a next step the “semiclassical approximation” is introduced, which consists of
a gradient expansion of the convolution integrals in coordinate space within the
Wigner transformation. For the time evolution only contributions up to first order
in the gradients are kept. Finally, the quasiparticle assumption is introduced as
follows: The Green’s functions appearing in the transport equation—explicitly or
implicitly via the selfenergies—are written in Wigner representation as a product of
a distribution functionN and the spectral function A. The quasiparticle assumption
is then realized by employing a δ-like form for the spectral function which connects
the energy variable to the three-momentum. By integrating the first-order transport
equation over all (positive) energies, furthermore, the quantum Boltzmann equation
for the time evolution of the on-shell distribution function (4.66) is obtained.

In spite of the fact, that the quantum Boltzmann equation (4.66) can be obtained
in different subsequent approximation schemes, it is of basic interest, how its actual
solutions compare to those from the full Kadanoff–Baym dynamics.

4.2.2 Boltzmann vs. Kadanoff–Baym dynamics

In the following we compare the solutions of the quantum Boltzmann equation
with the solution of the Kadanoff–Baym theory in two spatial dimensions. We
start with a presentation of the nonequilibrium time evolution of two colliding
particle accumulations (tsunamis) within the full Kadanoff–Baym calculation (see
Fig. 4.10).

During the time evolution the bumps at finite momenta (in px direction) slowly
disappear, while the one close to zero momentum—which initially stems from the
vacuum contribution to the Green’s function—is decreased as seen for different
snapshots at times t · m = 0, 15, 30, 45, 75, 150 in Fig. 4.10. The system with
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initially apparent collision axis slowly merges—as expected—into an isotropic final
distribution in momentum space.

The relation to the occupation density in momentum space is given by

n(p, t̃ ) =
√
G<φφ(p, t̃ , t̃ ) G

<
ππ(p, t̃ , t̃ ) −

1

2
. (4.67)

The actual results for n(px, py; t) are displayed in Fig. 4.11 and demonstrate the
equilibration of the momentum distribution from two separated Fermi spheres to
the final equilibrium distribution.

For the comparison between the full Kadanoff–Baym dynamics and the Boltz-
mann approximation we concentrate on equilibration times. To this aim we define a
“quadrupole” moment for a given momentum distribution n(p, t̃ ) at time t̃ as

Q(t̃) =

∫
ddp

(2π)d
(p2
x − p2

y) N(p, t̃ )∫
ddp

(2π)d
N(p, t̃ )

, (4.68)

which vanishes for the equilibrium state. For the Kadanoff–Baym case we employ
the actual distribution function by the relation (4.67). Note that when constructing
the distribution function by means of equal-time Green’s functions the energy
variable has been effectively integrated out. This has the advantage that the
distribution function is given independently of the actual on-shell energies.

The relaxation of the quadrupole moment (4.68) has been studied for two
different initial distributions: The evolution of distribution d2—which is practically
identical to the distribution D2 in Fig. 4.4—is displayed in Fig. 4.10 while for
distribution d1 the position and the width of the two-particle bumps have been
slightly modified compared to the distribution D1 in Fig. 4.4. The calculated
quadrupole moment (4.68) shows a nearly exponential decrease with time (cf.
Fig. 4.12) and one can extract a relaxation rate 
Q via the relation

Q(t̃) ∼ exp
(−
Qt̃) . (4.69)

Figure 4.12 shows for both initializations that the relaxation in the full quantum
(KB) calculation occurs faster for large coupling constants than in the Boltzmann
approximation, whereas for small couplings the equilibration times of the full and
the approximate evolutions are comparable. We find that the scaled relaxation
rate 
Q/λ2 is nearly constant in the Boltzmann case (cf. Fig. 4.13), but increases
with the coupling strength in the Kadanoff–Baym calculation (especially for initial
distribution d2).

These findings are readily explained: Since the free Green’s function—as used
in the Boltzmann calculation—has only support on the mass shell, only (2 ↔ 2)
scattering processes are described in the Boltzmann limit. All other processes with
a different number of incoming and outgoing particles vanish (as noted before).
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Fig. 4.12 Decrease of the quadrupole moment (4.68) in time for different coupling constants
λ/m = 8− 16 for the full Kadanoff–Baym calculation and the quantum Boltzmann approximation

Within the full Kadanoff–Baym calculation this is different, since here the spectral
function – determined from the selfconsistent Green’s function—acquires a finite
width. Thus the Green’s function has support at all energies although it drops
fast far off the mass shell. Especially for large coupling constants, where the
spectral function is sufficiently broad, the three particle production process gives
a significant contribution to the collision integral. Since the width of the spectral
function increases with the interaction strength, such processes become more
important in the high coupling regime. As a consequence the difference between
both approaches is larger for stronger interactions as observed in Fig. 4.12. For small
couplings λ/m in both approaches basically the usual 2 ↔ 2 scattering contributes
and the results for the thermalization rate 
Q are quite similar.

In summarizing this section we point out that the full solution of the Kadanoff–
Baym equations does include 1 ↔ 3 and 2 ↔ 2 off-shell collision processes
which—in comparison to the Boltzmann on-shell 2 ↔ 2 collision limit—become
important when the spectral width of the particles reaches ∼ 1/3 of the particle
mass. On the other hand, the Boltzmann limit works surprisingly well for smaller
couplings and those cases, where the spectral function is sufficiently narrow.
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Fig. 4.13 Relaxation rate (divided by the coupling λ squared) for Kadanoff–Baym and Boltzmann
calculations as a function of the interaction strength λ/m. For the two different initial configura-
tions d1 (upper lines) and d2 (lower lines) the full Kadanoff–Baym evolution leads to a faster
equilibration

4.3 Derivation of Off-Shell Relativistic Transport Theory

Formal derivations of covariant off-shell transport equations have been presented
more than 50 years ago by Kadanoff and Baym [8] but actual solutions have been
addressed only in a limited number of cases. This section is devoted to a transparent
derivation of generalized transport equations in first-order gradient expansion in
phase space including a generalized testparticle ansatz for the solution of the
off-shell transport equations. For a nonrelativistic formulation of related off-shell
transport equations we refer the reader to Ref. [9].

The derivation of generalized transport equations starts by rewriting the
Kadanoff–Baym equation for the Wightman functions in coordinate space
(x1=(t1, x1), x2=(t2, x2)) (4.35) as

[ ∂μx1
∂x1
μ +m2 +�δ(x1) ] iG>

<
(x1, x2) = i I>

<
1 (x1, x2) . (4.70)



134 4 Relativistic Dynamics and Off-Shell Transport

The collision terms on the r.h.s. of (4.70) are given in D = d + 1 space-time
dimensions by convolution integrals over coordinate-space selfenergies and Green’s
functions :

I>
<
1 (x1, x2) = −

∫ t1
t0

dDz
[
�>(x1, z)− �<(x1, z)

]
G>
<
(z, x2) (4.71)

+
∫ t2
t0

dDz �>
<
(x1, z)

[
G>(z, x2)−G<(z, x2)

]
.

In the general case of an arbitrary (scalar) quantum-field theory�δ is the local (non-

dissipative) part of the path selfenergy while �>
<

resemble the nonlocal collisional
selfenergy contributions. In the representation (4.71) the integration boundaries are
exclusively given for the time coordinates, while the integration over the spatial
coordinates extends over the whole spatial volume from−∞ to +∞ in d = D − 1
dimensions, i.e. dDz = dt ddz for z = (t, z).

Since transport theories are formulated in phase-space one changes to the
Wigner representation via Fourier transformation with respect to the rapidly varying
(’intrinsic’) relative coordinate �x = x1 − x2 and treats the system evolution in
terms of the (’macroscopic’) mean space-time coordinate x = (x1 + x2)/2 and the
four-momentum p = (p0,p) [10]. The functions in Wigner space are obtained as

F̄ (p, x) =
∫ ∞
−∞
dD�x e+i �xμ pμ F (x1 = x +�x/2, x2 = x −�x/2) . (4.72)

For the formulation of transport theory in the Wigner representation we have to
focus not only on the transformation properties of ordinary two-point functions
as given in (4.72), but also of convolution integrals as appearing in Eq. (4.71). A
convolution integral in D dimensions (for arbitrary functions F,G),

H(x1, x2) =
∫ ∞
−∞
dDz F(x1, z) G(z, x2) (4.73)

transforms as

H̄ (p, x) =
∫ ∞
−∞
dD�x e+i �xμ pμ H(x1, x2) (4.74)

=
∫ ∞
−∞
dD�x e+i �xμ pμ

∫ ∞
−∞
dDz F(x1, z) G(z, x2)

= e
+i 1

2 (∂
μ

p
· ∂x′μ − ∂μx· ∂

p′
μ ) [

F̄ (p, x) Ḡ(p′, x ′)
]∣∣∣∣
x ′=x, p′=p

.
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In accordance with the standard assumption of transport theory we assume that all
functions only smoothly evolve in the mean space-time coordinates and thus restrict
to first-order derivatives. All terms proportional to second or higher order derivatives
in the mean space-time coordinates (also mixed ones) will be dropped. Thus the
Wigner transformed convolution integrals (4.73) are given in first-order gradient
approximation by,

H̄ (p, x) = F̄ (p, x) Ḡ(p, x) + i 1

2
{ F̄ (p, x) , Ḡ(p, x) }P + O(∂2

x ) , (4.75)

using the relativistic generalization of the Poisson bracket

{ F̄ (p, x) , Ḡ(p, x) }P := ∂pμ F̄ (p, x) · ∂μx Ḡ(p, x)
−∂μx F̄ (p, x) · ∂pμ Ḡ(p, x) . (4.76)

In order to obtain the dynamics for the spectral functions within the approximate
scheme we start with the Dyson–Schwinger equations for the retarded and advanced
Green’s functions in coordinate space (4.21). Note that the convolution integrals
in (4.21) extend over the whole space and time range in contrast to the equations
of motion for the Wightman functions given in (4.22) and (4.23)!—The further
procedure consists in the following steps: First we

1. transform the above equations into the Wigner representation and apply the first-
order gradient approximation. In this limit the convolution integrals yield the
product terms and the general Poisson bracket of the selfenergies and the Green’s
functions {�R/A,GR/A }P . We, further on, represent both equations in terms
of real quantities by the decomposition of the retarded and advanced Green’s
functions and selfenergies as

ḠR/A = � ḠR ± i � ḠR = � ḠR ∓ i Ā/2 , Ā = ∓ 2� ḠR/A ,

�̄R/A = � �̄R ± i � �̄R = � �̄R ∓ i 
̄/2 , 
̄ = ∓ 2� �̄R/A .
(4.77)

We find that in Wigner space the real parts of the retarded and advanced Green’s
functions and selfenergies are equal, while the imaginary parts have opposite sign
and are proportional to the spectral function Ā and the width 
̄, respectively. The
next step consists in

2. the separation of the real part and the imaginary part of the two equations for the
retarded and advanced Green’s functions, that have to be fulfilled independently.
Thus we obtain four real-valued equations for the selfconsistent retarded and
advanced Green’s functions. In the last step

3. we get simple relations by linear combination of these equations, i.e. by
adding/subtracting the relevant equations.
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This finally leads to two algebraic relations for the spectral function Ā and the
real part of the retarded Green’s functionRe ḠR in terms of the width 
̄ and the real
part of the retarded selfenergy � �̄R as:

[p2
0 − p 2 −m2 − �̄δ +� �̄R ] � ḠR = 1 + 1

4

̄ Ā , (4.78)

[p2
0 − p 2 −m2 − �̄δ +� �̄R ] Ā = 
̄ � ḠR . (4.79)

Note that all terms with first-order gradients have disappeared in (4.78) and (4.79).
A first consequence of (4.79) is a direct relation between the real and the imaginary
parts of the retarded/advanced Green’s function, which reads (for 
̄ �= 0):

� ḠR = p2
0 − p 2 −m2 − �̄δ −� �̄R


̄
Ā . (4.80)

Inserting (4.80) in (4.78) we end up with the following analytical result for the
spectral function and the real part of the retarded Green’s function

Ā = 
̄

[p2
0 − p 2 −m2 − �̄δ −� �̄R ]2 + 
̄2/4

= 
̄

M̄2 + 
̄2/4
, (4.81)

� ḠR = [p2
0 − p 2 −m2 − �̄δ −� �̄R ]

[p2
0 − p 2 −m2 − �̄δ −� �̄R ]2 + 
̄2/4

= M̄

M̄2 + 
̄2/4
, (4.82)

where we have introduced the mass-function M̄(p, x) in Wigner space:

M̄(p, x) = p2
0 − p 2 −m2 − �̄δ(x)− � �̄R(p, x) . (4.83)

The spectral function (4.81) shows a typical Breit–Wigner shape with energy- and
momentum-dependent selfenergy terms. Although the above equations are purely
algebraic solutions and contain no derivative terms, they are valid up to the first
order in the gradients!

Exercise 4.2: Show that the negative imaginary part of the propagator

GF (p) = 1/(p2
0 − p2 −M2 + i2γp0)

(continued)
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(for γ > 0) can be written in relativistic Breit–Wigner form as

2γp0

(p2
0 − p2 −M2)2 + 4γ 2p2

0

and is normalized to unity for all momenta p, i.e.

−
∫ ∞
−∞

dp0

2π
2p0 �GF (p0,p) = 1.

In addition, subtraction of the real parts and adding up the imaginary parts lead
to the time-evolution equations

pμ ∂xμ Ā =
1

2
{ �̄δ + � �̄R , Ā }P + 1

2
{ 
̄ , � ḠR }P , (4.84)

pμ ∂xμ� ḠR =
1

2
{ �̄δ + � �̄R , � ḠR }P − 1

8
{ 
̄ , Ā }P . (4.85)

The Poisson bracket containing the mass-function M̄ leads to the well-known drift
operator pμ ∂xμ F̄ (for an arbitrary function F̄ ), i.e.

{ M̄ , F̄ }P = {p2
0 − p 2 −m2 − �̄δ −� �̄R , F̄ }P (4.86)

= 2pμ ∂xμ F̄ − { �̄δ + � �̄R , F̄ }P , (4.87)

such that the first-order equations (4.84) and (4.85) can be written in a more
comprehensive form as

{ M̄ , Ā }P = { 
̄ , � ḠR }P , (4.88)

{ M̄ , � ḠR }P = − 1

4
{ 
̄ , Ā }P . (4.89)

When inserting (4.81) and (4.82) we find that these first-order time-evolution
equations are solved by the algebraic expressions. In this case the following
relations hold:

{ M̄ , Ā }P = { 
̄ , � ḠR }P = { M̄ , 
̄ }P M̄2 − 
̄2/4

[ M̄2 + 
̄2/4 ]2 , (4.90)

{ M̄ , � ḠR }P = − 1

4
{ 
̄ , Ā }P = { M̄ , 
̄ }P M̄ 
̄/2

[ M̄2 + 
̄2/4 ]2 . (4.91)
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Thus we have derived the proper structure of the spectral function (4.81) within
the first-order gradient (or semiclassical) approximation. Together with the explicit
form for the real part of the retarded Green’s function (4.82) we now have fixed
the dynamics of the spectral properties, which is consistent up to first order in the
gradients.

4.3.1 Kadanoff–Baym Transport

As a next step we rewrite the memory terms in the collision integrals such that the
time integrations extend from −∞ to +∞. In this respect we consider the initial
time t0 = −∞ whereas the upper time boundaries t1, t2 are taken into account by
�-functions, i.e.

I>
<
1 (x1, x2) = −

∫ ∞
−∞
dDx ′ �(t1 − t ′)

[
�>(x1, x

′)−�<(x1, x
′)
]
G>
<
(x ′, x2)

+
∫ ∞
−∞
dDx ′ �>

<
(x1, x

′) �(t2 − t ′)
[
G>(x ′, x2)−G<(x ′, x2)

]

= −
∫ ∞
−∞
dDx ′

{
�R(x1, x

′) G>
<
(x ′, x2)

+�><(x1, x
′) GA(x ′, x2)

}
. (4.92)

We now perform the analogous steps as invoked before for the retarded and
advanced Dyson–Schwinger equations. We start with a first-order gradient expan-
sion of the Wigner transformed Kadanoff–Baym equation using (4.92) for the
memory integrals. Again we separate the real and the imaginary parts in the resulting
equation, which have to be satisfied independently. At the end of this procedure we
obtain a generalized transport equation:

2pμ ∂xμ iḠ
>< − { �̄δ+� �̄R, iḠ>< }P︸ ︷︷ ︸ −{ i�̄

>< , � ḠR }P = i�̄< iḠ> − i�̄> iḠ<

{ M̄ , iḠ>< }P − { i�̄>< , � ḠR }P = i�̄< iḠ> − i�̄> iḠ<
(4.93)
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as well as a generalized mass-shell equation

[p2 −m2 − �̄δ − � �̄R ]︸ ︷︷ ︸
M̄

iḠ>
< = i�̄>< � ḠR

+1

4
{ i�̄>, iḠ< }P − 1

4
{ i�̄<, iḠ> }P (4.94)

with the mass-function M̄ specified in (4.83). Since the Green’s function

G>
<
(x1, x2) consists of an antisymmetric real part and a symmetric imaginary

part with respect to the relative coordinate x1 − x2, the Wigner transform of this
function is purely imaginary. It is thus convenient to represent the Wightman

functions in Wigner space by the real-valued quantities iḠ>
<
(p, x). Since the

collisional selfenergies obey the same symmetry relations in coordinate space and

in phase-space, they will be kept also as i�̄>
<
(p, x) further on.

In the transport equation (4.93) one recognizes on the l.h.s. the drift term

pμ ∂xμ iḠ
><, as well as the Vlasov term with the local selfenergy �̄δ and the real part

of the retarded selfenergy� �̄R . On the other hand the r.h.s. represents the collision
term with its typical “gain and loss” structure. The loss term i�̄> iḠ< (proportional
to the Green’s function itself) describes the scattering out of a respective phase-
space cell whereas the gain term i�̄< iḠ> takes into account scatterings into the

actual cell. The last term on the l.h.s. { i�̄><,� ḠR }P is very peculiar since it
does not contain directly the distribution function iḠ<. This second Poisson bracket
vanishes in the quasiparticle approximation and thus does not appear in the on-shell

Boltzmann limit. The second Poisson bracket { i�̄><,� ḠR }P governs the evolution
of the off-shell dynamics for nonequilibrium systems.

Exercise 4.3: Compute the propagator for static massive fields, i.e. the solution
of

(−�+M2)Gf (x) = δ3(x).

Although the generalized transport equation (4.93) and the generalized mass-
shell equation (4.94) have been derived from the same Kadanoff–Baym equation in
a first-order gradient expansion, both equations are not exactly equivalent. Instead,
they deviate from each other by contributions of second gradient order, which are

hidden in the term { i�̄><,� ḠR }P . This raises the question: which one of these
two equations has to be considered of higher priority? The question is answered
in practical applications by the prescription of solving the generalized transport
equation (4.93) for iḠ< in order to study the dynamics of the nonequilibrium system
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in phase-space. Since the dynamical evolution of the spectral properties is taken
into account by the equations derived in first-order gradient expansion from the
retarded and advanced Dyson–Schwinger equations, one can neglect the generalized
mass-shell equation (4.94). Thus for actual numerical studies one should use the
generalized transport equation (4.93) supported by the algebraic relations (4.81)
and (4.82).

Exercise 4.4: Derive the propagator for a massive scalar field of finite lifetime
γ−1 in its rest frame, i.e. the solution of

(
∂2

∂t2
−�+M2 + 2γ

∂

∂t

)
Gret (x − x ′) = δ4(x − x ′)

for γ > 0.

4.3.2 Transport in the Botermans–Malfliet Scheme

Furthermore, one recognizes by subtraction of the iḠ> and iḠ< mass-shell and
transport equations, that the dynamics of the spectral function Ā = iḠ> −
iḠ< is determined in the same way as derived from the retarded and advanced
Dyson–Schwinger equations (4.81) and (4.88). The inconsistency between the two
Eqs. (4.93) and (4.94) vanishes since the differences are contained in the collisional
contributions on the r.h.s. of (4.93).

In order to evaluate the { i�̄<,Re ḠR }P -term on the l.h.s. of (4.93) and to
explore the differences between the KB- and Botermans–Malfliet (BM)-form of the
transport equations (see below) it is useful to introduce distribution functions for the
Green’s functions and selfenergies as

iḠ<(p, x) = N̄(p, x) Ā(p, x) , iḠ>(p, x) = [ 1 + N̄(p, x) ] Ā(p, x) , (4.95)

i�̄<(p, x) = N̄�(p, x) 
̄(p, x) , i�̄>(p, x) = [ 1 + N̄�(p, x) ] 
̄(p, x) . (4.96)

In equilibrium the distribution function with respect to the Green’s functions N̄
and the selfenergies N̄� are given as Bose functions in the energy p0 at given
temperature; they thus are equal in equilibrium but in general might differ out-
of equilibrium. Following the argumentation of Botermans and Malfliet [11] the
distribution functions N̄ and N̄� in (4.95) should be identical within the second term
of the l.h.s. of (4.93) in order to obtain a consistent first-order gradient expansion
(without hidden higher order gradient terms). In order to demonstrate their argument
we write

i�̄< = 
̄ N̄� = 
̄ N̄ + K̄ . (4.97)
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The “correction” term

K̄ = 
̄ ( N̄� − N̄ ) = ( i�̄< iḠ> − i�̄> iḠ< ) Ā−1 (4.98)

is proportional to the collision term of the generalized transport equation (4.93),
which itself is already of first order in the gradients. Thus, whenever a distribution
function N̄� appears within a Poisson bracket, the difference term (N̄� − N̄ )
becomes of second order in the gradients and should be omitted for consistency. As
a consequence N̄� can be replaced by N̄ and thus the selfenergy �̄< by Ḡ< ·
̄/Ā in
the Poisson bracket term {�̄<,Re ḠR}P . The generalized transport equation (4.93)
then can be written in shorthand notation as

1

2
Ā 
̄

[
{ M̄ , iḠ< }P − 1


̄
{ 
̄ , M̄ · iḠ< }P

]
= i�̄< iḠ> − i�̄> iḠ< (4.99)

with the mass-function M̄ (4.83). The transport equation (4.99) within the
Botermans–Malfliet (BM) form resolves the discrepancy between the generalized
mass-shell equation (4.94) and the generalized transport equation in its original
Kadanoff–Baym (KB) form (4.93).

In summarizing this section we have derived a covariant transport equation (4.99)
that incorporates the off-shell propagation of the degrees of freedom as well as off-
shell scattering and transitions. Since all quantities in Eq. (4.99) depend on (p, x)
its general solution on an eight-dimensional phase-space grid will be quite involved.

4.3.3 Testparticle Representation

The generalized transport equation (4.99) allows to extend the traditional on-shell
transport approaches (cf. Chaps. 2 and 3) for which efficient numerical recipes have
been set up. In order to obtain a practical solution to the transport equation (4.99) we
use an extended testparticle Ansatz for the Green’s function G<, more specifically
for the real and positive semi-definite quantity

F(x, p) = i G<(x, p)

∼
N∑
i=1

δ(3)(x−Xi(t))δ(3)(p− Pi (t)) δ(p0 − εi(t)) . (4.100)

In the most general case (where the selfenergies depend on four-momentumP , time
t and the spatial coordinates X) the equations of motion for the testparticles read

dXi
dt
= 1

1− C(i)
1

2εi

×
[

2 Pi + ∇Pi ��R(i) +
ε2
i − P2

i −M2
0 − ��R(i)


(i)
∇Pi 
(i)

]
, (4.101)
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dPi
dt
=− 1

1− C(i)
1

2εi

[
∇Xi ��Ri +

ε2
i − P2

i −M2
0 −��R(i)


(i)
∇Xi 
(i)

]
, (4.102)

dεi

dt
= 1

1− C(i)
1

2εi

[
∂��R

(i)

∂t
+ ε2

i − P2
i −M2

0 −��R(i)

(i)

∂
(i)

∂t

]
, (4.103)

where the notation F(i) implies that the function is taken at the coordinates of the
testparticle, i.e. F(i) ≡ F(t,Xi (t),Pi (t), εi (t)).

In (4.101)–(4.103) a common multiplication factor (1 − C(i))−1 appears, which
contains the energy derivatives of the retarded selfenergy

C(i) = 1

2εi

[
∂

∂εi
��R(i) +

ε2
i − P2

i −M2
0 −��R(i)


(i)

∂

∂εi

(i)

]
. (4.104)

It yields a shift of the system time t to the “eigentime” of particle i defined by
t̃i = t/(1 − C(i)). As the reader immediately verifies, the derivatives with respect
to the “eigentime,” i.e. dXi/dt̃i , dPi/dt̃i and dεi/dt̃i then emerge without this
renormalization factor for each testparticle i when neglecting higher order time
derivatives in line with the semiclassical approximation scheme.

Some limiting cases should be mentioned explicitly: In case of a momentum-
independent “width” 
(x) we take M2 = p2 − ��R as an independent variable
instead of p0, which then fixes the energy (for given p andM2) to

p2
0 = p2 + M2 + ��R(x,p,M2) . (4.105)

Equation (4.103) then turns to (�M2
i = M2

i −M2
0 )

d�M2
i

dt
= �M2

i


(i)

d
(i)

dt
↔ d

dt
ln

(
�M2

i


(i)

)
= 0 (4.106)

for the time evolution of the testparticle i in the invariant mass squared. In case of

 = const. the familiar equations of motion for testparticles in on-shell transport
approaches are regained.

Accordingly, we have reduced the solution of the l.h.s. of Eq. (4.99) to a coupled
set of first-order differential equations in time for the off-shell testparticles.
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4.3.4 Model Studies

For our present purpose to demonstrate the physical implications of Eqs. (4.101)–
(4.103) we consider the propagation of particles in a complex potential of Woods-
Saxon form, i.e.

Re�retX −
i

2

X = 2P0

{
V0

1+ exp{(|r| − R)/a0}

−i
(

W0

1+ exp{(|r| − R)/a0} +

V

2

)}
(4.107)

where we have used R = 5 fm, a0 = 0.6 fm throughout the model studies.
Equations (4.101)–(4.103)allow to represent the distribution function in terms of the
testparticle distribution (4.100) where ri (t),Pi (t) andM2

i (t) are the corresponding
solutions of Eqs. (4.101)–(4.103). We initialize all testparticles i with a fixed
energy P0 at some distance (|r(t = 0)| ≈ −15 fm) on the z-axis with a three-
momentum vector in positive z-direction. The mass parameters Mi(t = 0) are
selected according to the Breit–Wigner distribution

F(M) = 1

2π


V

(M − M0)2 + 
2
V /4

, (4.108)

where 
V denotes the vacuum width which might be arbitrarily small but finite (see
below). The particles are then propagated in time according to Eqs. (4.101)–(4.103)
and all one-body quantities can be evaluated from (4.100).

In Fig. 4.14 (l.h.s., upper part)7 the results for Pi0(z(t)), Mi(z(t)) and Piz(z(t))
are displayed as a function of z(t) instead of the time t. We show the evolution of 21
testparticles with mass parameters that are initially separated by �M = 0.05 · 
V
in the case of a nonvanishing imaginary part of the potential (W0 = 70 MeV,

V = 0.8 MeV) but vanishing real part of the potential (V0 = 0 MeV) (see
Fig. 4.14 (l.h.s., lower part)). One recognizes that the differences between the mass
parameters increase when reaching the potential region, which corresponds directly
to a broadening of the spectral function. The same spreading behavior is observed
for the three-momentum of the testparticles, such that the energy P0 is conserved
throughout the whole calculation (upper line). When leaving the potential region
the splitting decreases and the correct asymptotic solution is restored.

In Fig. 4.14 (r.h.s., upper part) we show a calculation for a nonvanishing real part
of the potential (i.e. V0 = −20 MeV, (r.h.s., lower part)). While the spreading of the
mass parameter is not affected by this change, we find a shift of the testparticle
momenta where the real part of the potential deviates from zero since here the
particles are accelerated.

7 The figures in this Subsection are taken from [12].
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Fig. 4.14 (left) upper part: Pi0,Mi , and Piz as a function of z(t) for a purely imaginary potential
W0 = 70 MeV (lower part). The vacuum width is 
V = 0.8 MeV and the initial separation in mass
of the testparticles is given by �M = 0.05 · 
V . (right) upper part: Pi0,Mi , and Piz as a function
of z(t) for a complex potential with V0 = −20 MeV, W0 = 70 MeV (lower part)

In the next example of this model study we show in Fig. 4.15 (upper part) the case
of a broad vacuum spectral function entering a (time-independent) nonrelativistic
potential with V0 = −20 MeV and W0 = 100 MeV. The vacuum width is chosen
as 
V = 160 MeV, while the testparticle trajectories are shown with an initial
separation of the masses �M = 0.05 · 
V . One observes that the spectral function
is further broadened in the complex potential zone and reaches its initial dispersion
in mass again after passing the diffractive and absorptive area.

The question remains if the testparticle distribution (4.100) reproduces the local
splitting in mass as expected due to quantum mechanics, i.e. in our case a Breit–
Wigner distribution (4.108) with a local width 
X = 2 W0(z) + 
V . This is
demonstrated in Fig. 4.16 where we show the spectral function as a function of mass
M from the testparticle evolution at fixed coordinate z in comparison to the quantum
Breit–Wigner distribution with local width 
X (full lines) for a pure imaginary
potential with parameters W0 = 50 MeV and vacuum width 
V = 2 MeV. The
differences from the exact results in Fig. 4.16 are practically not visible for all values
of z from −8 to 8 fm. The width of the distribution increases from 1 MeV in the
vacuum (z = ± 8 fm) to 102 MeV (= 2 W0+ 
V ) in the center of the absorptive
potential (z = 0). Thus our off-shell quasiparticle propagation is fully in line with
the quantum mechanical result at least for quasi-stationary quantum states.
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Fig. 4.15 upper part: Pi0,Mi , and Piz as a function of z(t) for a broad vacuum spectral function
in a time-independent potential V0 = −20 MeV, W0 = 100 MeV (lower part). We have chosen a
vacuum width
V = 160 MeV and an initial mass separation of�M = 0.05·
V for the testparticle
trajectories displayed

To summarize our model results for the simple complex potential of Woods-
Saxon-type, we find that energy conservation is guaranteed during the propagation
and that the correct asymptotic solutions for the spectral functions are restored.
Furthermore, in the potential region we observe a broadening of the width of the
spectral function due to the space-time dependent imaginary part of the potential in
line with quantum mechanics.

4.4 Kadanoff–BaymDynamics for Fermions

The relativistic description of fermion fields in general follows that for boson fields
in Sect. 4.1, however, with a different quantum statistics due to the anti-commutator
algebra for fermion fields. Furthermore, the two-point functions are 4×4 matrices in
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Fig. 4.16 The spectral distribution at different coordinates z from the testparticle distribution in
comparison to the analytical result (solid lines) for V0 = 0, W0 = 50 MeV and 
V = 2 MeV. The
analytical result is practically identical to the histograms from the testparticle distribution and thus
hardly visible
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the Dirac indices since the spin 1/2(h̄) Dirac fields ψα(x) and Pauli-adjoint spinors
ψ̄α (α = 1, .., 4) are four-component spinors describing simultaneously two spin
projections of particles as well as antiparticles. Basic elements of the Dirac-Clifford
algebra (and conventions) are recalled in Appendix G.

4.4.1 Two-Point Functions on the CTP

Again the Green’s functions on the contour may have time arguments on the same
branch of the contour or on opposite branches giving four possibilities for the
Green’s functions8 defined by

iScαβ(x, y) = iS++αβ (x, y) = 〈 T̃ c(ψα(x)ψ̄β(y)) 〉 (4.109)

iS<αβ(x, y) = iS+−αβ (x, y) = −
〈
ψ̄β(y)ψα(x)

〉
(4.110)

iS>αβ(x, y) = iS−+αβ (x, y) =
〈
ψα(x)ψ̄β(y)

〉
(4.111)

iSaαβ(x, y) = iS−−αβ (x, y) = 〈 T̃ a(ψα(x)ψ̄β(y)) 〉 , (4.112)

which are not independent!9 Time-ordering has to be fulfilled if both time arguments
are on the same axis. The causal time-ordering operator T̃ c places fields at later
times to the left while the anticausal operator T̃ a places fields at later times to the
right (with a (-) sign for each exchange). One may again write the Green’s function
on the Keldysh contour in terms of a 2×2 matrix

Sαβ(x, y) =
⎛
⎝

+ −
+ Scαβ(x, y) S<αβ(x, y)

− S>αβ(x, y) Saαβ(x, y)

⎞
⎠ (4.113)

in analogy to (4.9), however, now the elements are 4×4 matrices in the Dirac indices
each. Similar representations hold for the “free” Green’s function S0(x, y) as well
as the selfenergy �̂,

�̂αβ(x, y) =
⎛
⎜⎝

+ −
+ �̂cαβ(x, y) �̂<αβ(x, y)

− �̂>αβ(x, y) �̂aαβ(x, y)

⎞
⎟⎠ (4.114)

8 In order to distinguish the Green’s functions for fermions from those for bosons we use the
notation S instead of G.
9 Here α, β = 1,..,4 denote the Dirac indices.
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which has to be evaluated in some truncation scheme (of higher order). In lowest
order for fermions it is given by the Dirac–Hartree–Fock selfenergy , however, a
nonperturbative Dirac–Brueckner scheme—in analogy to the nonrelativistic case in
Sect. 2.4—should be mandatory.

The further derivation again starts with a Dyson equation (cf. (C.7)) (suppressing
now the Dirac indices)

S(x, y) = S0(x, y)+ S0(x, y
′)� �̂(y ′, z′)� S(z′, y) , (4.115)

where � stands for the integration over repeated space-time arguments including
the contour matrix η = diag(1,−1) that is acting on the contour index, i.e. η = 1 for
the upper branch and η=-1 for the lower branch, respectively. Note that Eq. (4.115)
is of one-body type and higher order correlations are included in the selfenergy �̂
(which should be evaluated in a nonperturbative scheme as pointed out above). The
inverse of the free Green’s function in coordinate space is given by

S−1
0,x = iγ μ∂xμ −M (4.116)

and fulfills the equation of motion

S−1
0,x S0,x(x, y) = η δ4(x − y). (4.117)

The Dyson equation (4.115) thus can also be written as

S−1
0,x S(x, y) = η δ4(x − y)+ �̂(x, y ′)� S(y ′, y). (4.118)

For the further considerations it is again useful to introduce retarded and advanced
quantities by

SA(x, y) = Sc(x, y)− S>(x, y) = S<(x, y)− Sa(x, y), (4.119)

SR(x, y) = Sc(x, y)− S<(x, y) = S>(x, y)− Sa(x, y),

�̂A(x, y) = �̂c(x, y)− �̂>(x, y) = �̂<(x, y)− �̂a(x, y), (4.120)

�̂R(x, y) = �̂c(x, y)− �̂<(x, y) = �̂>(x, y)− �̂a(x, y).

From Eq. (4.118) we then get

S−1
0,xS

R/A(x, y) = δ4(x − y)+ �̂R/A(x, z)� SR/A(z, y) (4.121)

containing only information from retarded/advanced quantities. The non-diagonal
elements of (4.115) give

S−1
0,xS

<(x, y) = �̂R(x, z)� S<(z, y)+ �̂<(x, z)� SA(z, y) (4.122)
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and provide the space-time evolution of the system as well as the time evolution
of the spectral properties. This will become evident after Wigner transformation of
(4.122) and a gradient expansion in phase space (see below), whereas (4.121) will
provide the spectral properties of the fields (particles).

In the relativistic case the scalar density ρs(x) and the vector four-current jμ(x)
are of central interest and defined by

ρs(x) = 〈ψ̄(x)ψ(x)〉 = −iT r(S<(x, x)) = −i
∑
α

S<(x, x)αα, (4.123)

jμ(x) = 〈ψ̄(x)γ μψ(x)〉 = −iT r(γ μS<(x, x)) = −i
∑
αβ

(γ μ)αβS
<(x, x)βα.

4.4.2 Definition of Selfenergies

For the solution of the Kadanoff–Baym equations the computation/fixing of the
selfenergies �̂ is mandatory. Here a �-derivable scheme—as used in Sect. 4.1
for bosons—is of substantial advantage (or necessary) since it leads to equations
of motions that conserve energy-momentum, angular momentum and charge-like
quantum numbers and is simultaneously thermodynamically consistent, i.e. the bulk
properties of the system fulfill the Maxwell relations between the corresponding
thermodynamic potentials in equilibrium. We recall that in case of an “effective”
relativistic approach like QHD (Quantum-Hadro-Dynamics) [13,14] this thermody-
namic consistency had to be shown explicitly.10 The�-functional itself is a function
of the full propagators and mean fields and the selfenergy is given by the variational
derivative [15]

�̂c(x, y) = −i δ�[S
c]

δSc(y, x)
, (4.124)

where the functional �[S] is defined diagrammatically as the sum of all closed
Feynman diagrams, where the internal limes represent the full propagator S, and
which cannot be separated into disconnected parts by cutting two propagator lines
(cf. Sect. 4.1.4 in case of the scalar φ4-theory). This scheme is denoted by a two-
particle irreducible (2PI) approximation. The variational derivative then leads to a
skeleton expansion for the selfenergy in terms of full propagators, i.e. as a sum
over all selfenergy diagrams with propagator lines that do not contain selfenergy
insertions. This avoids double-counting of interactions. In this context a partial
resummation of ring-diagrams leads to Landau-Fermi-liquid theory while a partial
resummation of ladder diagrams leads to Dirac–Brueckner theory. Furthermore, the
definition of the selfenergy (4.124) differs from the case of bosons by a factor (−2)

10 cf. Appendix H.
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since the Klein–Gordon equation is of second order in the space-time derivatives
whereas the Dirac equation is of first order. Note however, that each componentψα
of the free Dirac spinor is also a solution of the Klein–Gordon equation expressing
the mass-shell constraintE2 = p2+M2. On the other hand any partial resummation
of diagrams violates the Ward–Takahashi identities, which are a counterpart to the
trace relations discussed in Appendix B in the nonrelativistic case. Also the latter
are violated in the different truncation schemes (cf. Sect. 2.2).

The transport equation for the Green’s function—or Kadanoff–Baym equation—
is obtained from Eq. (4.122) and its adjoint equation using the identities

�̂R(x, y) = ��̂R(x, y)+ 1

2
(�̂>(x, y)− �̂<(x, y)), (4.125)

�̂A(x, y) = ��̂R(x, y)− 1

2
(�̂>(x, y)− �̂<(x, y)),

i.e.

i(γ μ∂xμ + γ μ∂yμ)S<(x, y)− [��̂R � S<](x, y)+ [S< ���̂R](x, y) (4.126)

− [�̂< ��SR](x, y)+ [�SR � �̂<](x, y)

= 1

2

(
[�̂> � S<](x, y)+ [S< � �̂>](x, y)

−[�̂< � S>](x, y)− [S> � �̂<](x, y)
)
.

Since the coupled equations (4.125) and (4.126) are difficult to solve in space-time
representation one proceeds with a Wigner transformation of these equations as in
case of the Bose system in Sect. 4.3 and restricts to first-order gradients in phase
space thus assuming that the Wigner functions only smoothly depend on the average
space-time coordinateX = (x + y)/2 and four-momentum P .

In case one is interested only in spin averaged quantities—as for relativistic
heavy-ion reactions—one takes additionally the spinor trace of the Kadanoff–Baym
equation (4.126) in first-order gradient expansion. Thus defining the vector-current
density by

Vμ(X,P ) = −iT r[S<(X,P )γ μ] (4.127)

and using the cyclic invariance of the trace one ends up with the transport equation
for spin 1/2h̄ Dirac particles:

∂μVμ(X,P )− T r{��̂R(X,P ),−iS<(X,P )}P + T r{�SR(X,P ), (4.128)

− i�̂<(X,P )}P = Icoll(X, P )
= T r[�̂<(X,P )S>(X,P )− �̂>(X,P )S<(X,P )],
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with the collision term Icoll describing the dissipative part with separate gain and
loss terms. In Eq. (4.128) we have used again the relativistic generalization of the
Poisson bracket (3.27),

{F(X,P ),G(X,P )}P := ∂Pμ F(X,P ) · ∂μXG(X,P )− ∂μXF(X,P ) · ∂Pμ G(X,P ).
(4.129)

The l.h.s. of Eq. (4.128) contains the free streaming term ∂μVμ(X,P ), the regular
mean-field term with the derivatives of ��̂R(X,P ) and S<(X,P ) as well as the
backflow term with the derivatives of �SR(X,P ) and �̂<(X,P ).

In principle the 4×4 matrices ��̂R(X,P ), S<(X,P ), �SR(X,P ), and
�̂<(X,P ) may have nonvanishing off-diagonal terms that even change in X and
P in a complicated fashion. Since the many-body truncation scheme is incomplete
and only a partial resummation of interaction terms can be carried out a full and
accurate solution might be practically impossible. Accordingly, we will assume in
the following that these matrices are approximately diagonal such that the trace
simply gives the sum of Dirac particles and antiparticles with two spin projections
each. This allows to write down four transport equations in the form of (4.128) for
each component separately, however, with separate selfenergies for particles and
antiparticles. Adopting the simplified Lorentz decomposition

�̂Ru (X,P ) ≈ �s(X,P )− γμ�μ(X,P ) (4.130)

for the upper diagonal elements (denoted by the index u) we get

�̂Rd (X, P ) ≈ �s(X,P )+ γμ�μ(X,P ) (4.131)

for the lower diagonal elements (denoted by the index d) due to the time-reflection
properties. This, however, will severely violate dispersion relations11 such that
different scalar and vector selfenergies should be employed for particles and
antiparticles in practice in line with coupled-channel Dirac–Brueckner calculations.

4.4.3 Spectral Functions

The spectral properties of the fermion fields can be specified via (4.119) which gives

�SR(X,P ) = − i
2
(S>(X,P ) − S<(X,P )), (4.132)

�SA(X,P ) = i
2
(S>(X,P )− S<(X,P )),

11 The Kramers–Kronig relations are recalled in Appendix F.
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leading to the spectral function in terms of a 4×4 matrix (in phase-space represen-
tation)

Â(X, P )αβ = − 1

π
�SR(X,P )αβ = i

2π

(
S>(X,P )αβ − S<(X,P )αβ

)
(4.133)

= i

2π

(
SR(X,P )αβ − SA(X,P )αβ

)
.

An integration over P0 leads to the equal-time commutation relations for Dirac
spinors, i.e.

∫ ∞
−∞
dP0 Â(X, P )αβ = (γ 0)αβ. (4.134)

Furthermore, the retarded and advanced Green’s functions follow the dispersion
relations

SR/A(X,P )αβ =
∫ ∞
−∞
dP ′0

Â(X, P ′0,P)αβ
P0 − P ′0 ± iη

. (4.135)

By taking the trace over Dirac indices one can define a spin averaged spectral
function

A(X,P) := 1

2
T r
(
Â(X, P )γ 0

)
= − 1

2π
T r
(
�(SR(X,P ))γ 0

)
. (4.136)

The quantity (4.136) transform as the temporal component of a Lorentz four-vector
and has the interpretation of an energy distribution due to the normalization (4.134)
(or quantization).

A spin averaged Wigner function F(X,P ), furthermore, is defined by

F(X,P ) = −2f (X,P ) T r
(
�(SR(X,P ))γ 0

)
(4.137)

and also transforms as the temporal component of a Lorentz four-vector. It is
the generalization of the phase-space density in Wigner representation for the
relativistic case of Dirac fermions. Furthermore, using (4.136) this function can be
rewritten as

F(X,P ) = 2πDf (X,P ) A(X,P ), (4.138)

(withD = 2) such that the spectral information is separated out in F(X,P ) (4.137)
in analogy to the bosonic case in Sect. 4.3. In thermal equilibrium (of a homoge-
nous system in space) the function f (P ), however, becomes a Fermi-distribution
instead of the Bose distribution. Accordingly, f (X,P ) has the interpretation of
“local occupation numbers.” Furthermore, the spectral function A(X,P) has the
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dimension [1/energy] in case of fermions whereas in case of bosons the dimension
is [1/energy2]. On the other hand the selfenergies have the dimension [energy] in
case of fermions whereas the dimension is [energy2] for bosons. This has to be taken
care of in actual transport calculations that simultaneously propagate fermions and
bosons.

4.5 Spectral Evolution of Vector Mesons in Heavy-Ion
Collisions at 2 A GeV

The theory of quantum-chromo-dynamics (QCD) describes hadrons as many-body
bound or resonant states of partonic constituents, i.e. quarks, antiquarks, and gluons.
While the properties of hadrons are rather well known in free space (embedded in
a nonperturbative QCD vacuum) the mass and lifetimes of hadrons in a baryonic
and/or mesonic environment are subject of research in order to achieve a better
understanding of the strong interaction and the nature of confinement. In this context
the modification of hadron properties in nuclear matter is of fundamental interest
since QCD sum rules as well as QCD inspired effective Lagrangian models [16]
have predicted significant changes e.g. of the vector mesons (ρ, ω and φ) with
the nuclear density ρN and/or temperature T . Due to the electromagnetic decay
of vector mesons to e+e− or μ+μ− pairs and the weak interaction of leptons with
hadrons in the dense medium the spectroscopy of lepton pairs provides a closer view
on the spectral properties of vector mesons in dense and hot nuclear matter. Indeed,
some direct evidence for the modification of vector meson spectral functions has
been obtained experimentally from the enhanced production of lepton pairs above
known sources in nucleus-nucleus collisions [17]. The observed enhancement in
the invariant mass range 0.3 ≤ M ≤ 0.7 GeV might be due to a downward shift
of the ρ-meson mass or simply due to a substantial broadening of the vector meson
spectral functions due to frequent interactions with nucleons and mesons or their
excited states. A microscopic description of such medium modifications requires
an explicit dynamical evolution of their spectral functions, i.e. off-shell transport as
derived in the previous sections.

In order to demonstrate the importance of off-shell transport dynamics in
particular for vector mesons we present in Fig. 4.17 the time evolution of the
mass distribution of ρ (upper part) and ω (lower part) mesons for central C+C
collisions (at impact parameter b=1 fm) at 2 A GeV for the case of a dropping
mass + collisional broadening scenario (as an example). The transport approach is
conceptually equivalent to the RBUU approach in Sect. 3.1, where the baryons are
treated on-shell, however, the vector mesons are treated off-shell in line with the
generalized equations of motion (4.101)–(4.103). In this scenario the pole masses
of the vector mesons drop linearly with local baryon density while the width of the
vector mesons is broadened in the medium due to the local interaction rate with
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Fig. 4.17 Time evolution of the mass distribution of ρ (upper part) and ω (lower part) mesons
for central C + C collisions (b=1 fm) at 2 A GeV for the dropping mass + collisional broadening
scenario. The l.h.s. of Fig. 4.17 correspond to the calculations with on-shell dynamics whereas the
r.h.s. show the off-shell results

the medium.12 The l.h.s. of Fig. 4.17 corresponds to the calculations with on-shell
propagation whereas the r.h.s. show the results for the off-shell dynamics for the
vector mesons.

As seen from Fig. 4.17 the initial ρ- and ω-mass distributions are quite broad
even for a small system such as C + C where, however, the baryon density at 2
A GeV may reach (in some local cells) up to twice nuclear matter density ρ0. The
number of vector mesons initially is enhanced—as compared to the free case—due
to the downward shift of the ρ and ω spectral functions and decreases with time due
to their decays (to 2 or 3 pions) and the absorption by baryons (ρN → πN , ρN →
ππN , ωN → πN , etc.). Most of the ρ mesons decay/disappear already inside the
‘fireball’ for density ρN > 0. Due to the “fireball” expansion the baryon density
drops quite fast, so some amount of ρ mesons reach the very low density zone or

12 The actual details are not of interest here but can be taken from Ref. [18].
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even the “vacuum.” Since for the off-shell case (r.h.s. of Fig. 4.17) the ρ spectral
function changes dynamically by propagation in the dense medium according to
Eqs. (4.101)–(4.103), it regains the vacuum shape for vanishing density. This does
not happen for the on-shell treatment (l.h.s. of Fig. 4.17); the ρ spectral function
does not change its shape by propagation but only by explicit collisions with other
particles. Indeed, there is a number of ρ’s which survive the decay or absorption and
leave the “fireball” with masses below 2mπ . Accordingly, the on-shell treatment
leads to the appearance of ρ mesons in the vacuum with M ≤ 2mπ , which can
not decay to two pions; thus they live practically “forever” since the probability to
decay to other channels is very small. Such ρ’s will continuously shine low mass
dilepton (e+e−) pairs which leads to an unphysical “enhancement/divergence” of
the dilepton yield at low masses.

The same statements are valid for the ω mesons (cf. lower part of Fig. 4.17):
since the ω-meson is a longer living resonance, a larger amount of ω’s survives
with an in-medium like spectral function in the vacuum (in case of on-shell
dynamics). Such ω’s with M < 3mπ can decay only to πγ or electromagnetically
(if M < mπ ). Since such unphysical phenomena appear in on-shell transport
descriptions (including an explicit vector meson propagation) an off-shell treatment
is mandatory.

In summarizing this section we note that the proper dynamical evolution of short-
lived particles or strongly-interacting degrees of freedom requires off-shell transport
equations and the inclusion of off-shell transitions in particular for those processes
that are kinematically forbidden in an on-shell treatment. Further applications of off-
shell transport—in case of heavy-ion collisions—address the dynamics of antikaons
at high baryon density and temperature [19, 20] as well as partonic degrees of
freedom with broad spectral functions [21–23] in the quark-gluon plasma phase.

4.6 Electromagnetic Field Evolution in Ultra-Relativistic
Collisions

Heavy-ion collisions at ultra-relativistic energies represent the only laboratory on
Earth for the investigation of the deconfined phase of strongly-interacting matter,
which is denoted as Quark-Gluon-Plasma (QGP). Its formation and evolution
shows some of the most extreme properties of matter ever observed, i.e. very high
temperatures T even several times the critical temperature Tc ≈ 155 MeV for
the transition between hadronic and partonic matter, which is about five orders of
magnitude higher than the temperature in the center of the sun; a very low ratio of
the shear viscosity over entropy density η/s close to Tc (more than twenty times
smaller than that of water at the corresponding Tc); strong magnetic fields up to
eB ∼ 50m2

π ∼ 1019G (some order of magnitude larger than that expected on the
surface of magnetars) and an intense vorticity up to ω ∼ 0.1 c/fm∼ 1022 s−1 which
is about 14 orders of magnitude higher than that of any other fluid observed.13

13 cf. the review [24].



156 4 Relativistic Dynamics and Off-Shell Transport

In ultra-relativistic collisions of heavy ions at Relativistic Heavy-Ion Collider
(RHIC) or Large Hadron Collider (LHC) energies one observes a rather clear-
cut separation of “participants” and “spectators” where the latter move practically
“free” with their initial velocity in the nucleon-nucleon center-of-mass system.
Since the spectators are electrically charged in line with the proton content the
latter generate an electromagnetic field which is contracted in beam direction by
the Lorentz γ -factor of the spectators14 and can achieve a high field strength in the
region of the participants. Let us assume that the impact parameter of the collision
is in x-direction while the beam is in z-direction. In this case the electric field
E(r; t) approximately cancels in the center of the participants (r ≈ 0) in case of
symmetric systems, however, the magnetic field B(r; t) adds up the contribution
from charged projectile and target spectators and is directed preferentially in y-
direction. On the other hand, in asymmetric collision systems the electric field
may also be high at r ≈ 0 due to the different number of positive charges in the
projectile and target spectators. It is thus of basic interest to know the strength and
time dependence of electromagnetic fields in (ultra-) relativistic nucleus-nucleus
collisions in order to learn about the electromagnetic forces and their impact on
the charged degrees of freedom in the participant zone. Since the electromagnetic
interaction and coupling strength is well known the extension of transport theory to
electromagnetic interactions is rather straight forward and does not involve any new
parameter.

To describe an ultra-relativistic collision of heavy ions we start from the
relativistic Boltzmann equation for an on-shell phase-space distribution function
f ≡ f (x, p) for nucleons (and mesons) discarding selfenergies of the particles
which are by far subleading as compared to the huge kinetic energy of the particles,

pμ
∂

∂xμ
f = p0Ĉ[f ] (4.139)

where Ĉ[f ] is the collision integral and x, p are the 4-coordinate and 4-momentum
of a particle with p0 taken on-shell. A background electromagnetic field may be
taken into account by including an electromagnetic tensor Fμν into Eq.(4.139) as

pμ(
∂

∂xμ
− Fμν ∂

∂pν
)f = p0Ĉ[f ], (4.140)

where

eFμν = ∂μAν − ∂νAμ (4.141)

with the electromagnetic four-vector potentialAμ = (�,A). Note that the left-hand
side of Eq. (4.140) is gauge invariant since it involves only the electromagnetic field

14 This γ -factor is in the order of 100 at top RHIC energies and > 1000 at LHC energies.
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strength tensor Fμν(x). Equation (4.140) can be rewritten in terms of components
of Aμ (after dividing by p0):

{
∂

∂t
+ p
p0
·∇r −

(
e∇�+ e ∂A

∂t
− ev× (∇ ×A)

)
∇p

}
f = Ĉ[f ] (4.142)

with v = p/p0. The strength of the magnetic B and electric E fields is, respectively,

B = ∇ × A , E = −∇�− ∂A
∂t
. (4.143)

We note that the electromagnetic field generated by moving nuclei may be consid-
ered as an external field: the value of the electromagnetic field at a given point is
determined by the global charge current of the colliding nuclei and thus, in good
approximation, independent of the local strong interaction dynamics. However, the
presence of the electromagnetic field can affect the interactions among particles,
which simultaneously carry electric and (possibly) color charges. Using the relations
(4.143) the system (4.142) is reduced to a more familiar form:

{
∂

∂t
+ p
p0
·∇r + (eE+ ev× B)∇p

}
f = Ĉ[f ] (4.144)

for particles of charge e containing explicitly the well-known electromagnetic
Lorentz force.15

Exercise 4.5: Derive the retarded propagator for the wave equation

∂μ∂
μGret (x, x

′) = δ4(x − x ′) ≡
(

1

c2

∂2

∂t2
−�r

)
Gret (r− r′; t − t ′)

= δ(t − t ′)δ3(r− r′).

The transport equations for strongly-interacting particles with electric charge e
(4.142) have to be supplemented by the electromagnetic field equations

∇ × E = −1

c

∂B
∂t
, ∇·B = 0 . (4.145)

15 In case of quarks and antiquarks the charge may also be ±e/3 or ±2e/3.
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The general solution of the wave equations (4.145) for the charge distribution ρ(r, t)
and electric current j(r, t) is

�(r, t) = 1

4π

∫
ρ(r′, t ′) δ(t − t ′ − |r− r′|/c)

|r− r′| d3r ′dt ′ (4.146)

for the electromagnetic scalar potential�(r, t) and

A(r, t) = 1

4π

∫
j(r′, t ′) δ(t − t ′ − |r− r′|/c)

|r− r′| d3r ′dt ′ (4.147)

for the vector potential. For a single moving point-like particle with charge e one
gets

ρ(r, t) = e δ(r− r(t)), j(r, t) = e v(t) δ(r− r(t)) (4.148)

and, after integration of Eq. (4.147) using

∫ ∞
−∞
g(x) δ(f (x)) dx =

∑
i

g(xi)

|f ′(xi)| , (4.149)

we obtain (after summing over all charged particles i):

�(r, t) = e

4π

∑
i

1

R(t ′i )κ(t ′i )
(4.150)

with the definitions

R(t ′i ) = r− r(t ′i ), κ(t ′i ) = 1− R(t ′i ) · v(t ′i )
cR(t ′i )

=
∣∣∣∣∣
(
df

dt ′

)
t ′=t ′i

∣∣∣∣∣ . (4.151)

In (4.151) the times t ′i are solutions of the retardation equation (R(t ′) = |R(t ′)|)

f (t ′) = t ′ − t + R(t ′)/c = 0, (4.152)

which has an easy solution for straight line trajectories. By analogy we get for the
vector potential:

A(r, t) = e

4π

∑
i

v(t ′i )
R(t ′i )κ(t ′i )

. (4.153)

Thus, Eqs. (4.146) and (4.147) lead to the retarded Liénard–Wiechert potentials
(4.150) and (4.153) acting at the point R = r− r′ at the time t . The electromagnetic
potentials �(r, t) and A(r, t) are generated by every moving charged particle and
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describe elastic Coulomb scattering as well as inelastic bremsstrahlung processes.
Here we have used ε0μ0 = 1/c2 ≡ 1 by setting ε0 = μ0 = 1 such that
eA ∼ e2/(4π) = αem ≈ 1/137.

With the help of the solutions (4.150) and (4.153) the retarded electric and
magnetic fields can be derived from (4.143) by evaluating the proper space-time
derivatives:

E(r, t) = e

4π

(
n
κR2 +

−b/c − [(n · v)n− v]/R
κ2cR

)
ret

− e
4π

(
(−v(t ′)/c + n(t ′))(v2/c − n · v− R/c(n · b))

κ3cR2

)
ret

,(4.154)

and

B(r, t) = e

4π

(
v× n
κR2 + (

b(t ′)× n(t ′)+ v(t ′)× [(n · v)n− v]/R
κ2cR

)

)
ret

− e
4π

(
(v(t ′)× n(t ′))(v2/c − n · v− R/c(n · b))

κ3cR2

)
ret

(4.155)

with the acceleration b = d/dt ′ v and the unit vector n = R/R. When neglecting
the acceleration b—being practically zero for spectator nucleons—we arrive at

eE = sign(e) α R(t) (1− v2/c2)[
(R(t) · v/c)2 + R2(t)(1 − v2/c2)

]3/2 , (4.156)

eB = sign(e) α [v×R(t)] (1− v2/c2)

c
[
(R(t) · v/c)2 + R2(t)(1− v2/c2)

]3/2 , (4.157)

where in the left-hand side an additional charge e is introduced to get the
electromagnetic fine-structure constant α = e2/4π ≈ 1/137 in the right-hand side
of these equations. The last expression is reduced to the familiar form of the retarded
Liénard–Wiechert equation for the magnetic field of a moving charge,

B(r, t) = e

4π

[v×R]
cR3

(1− v2/c2)

[1− (v/c)2 sin2 φRv]3/2
, (4.158)

with R = R(t), while φRv is the angle between R(t) and v.
The set of transport equations (4.142) in the following is solved in the quasipar-

ticle approximation (as before) while the electromagnetic fields are computed on a
suitable space-time grid. The quasiparticle propagation in the electromagnetic fields
follows from Eq.(4.144) as

dp
dt
= eE+ e

c
v× B (4.159)
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Fig. 4.18 Snapshot of the By distribution for the magnetic field and its projection on the (z − x)
plane for a single charge e moving along the z axis

and may be supplemented by strong forces from scalar and vector selfenergies as in
Sect. 3.1. The change of the electromagnetic energy is (e/c)(v · E), i.e. the magnetic
field does not change the quasiparticle energy. In order to avoid singularities and
self-interaction effects arising from point-like particles, all particles within a given
Lorentz-contracted cell are excluded from the field calculations.

4.6.1 Electromagnetic Fields in Au+Au Collisions at
√

s= 200 GeV

The scheme described above for the computation of the electromagnetic field is
applied here to ultra-relativistic heavy-ion collisions at the invariant energy per
nucleon pair

√
s= 200 GeV,16 which is the top energy achieved at the Relativistic

Heavy-Ion Collider (RHIC) at Brookhaven. For transparency, however, we will
start with the magnetic field created by a single freely moving charge. As seen in
Fig. 4.18, the charge creates a cylindrically symmetric field with the symmetry axis
along the direction of motion. If one follows the magnetic field direction, it appears
to be torqued around the direction of motion. Therefore, the magnetic field on the
left and right sides with respect to the moving charge has opposite signs, resulting
in some maximum and minimum of the magnetic field at a given instant of time.
The opposite field signs directly follow from Eq. (4.158) if one takes into account
that the vector R (Eq. (4.151)) in this situation has opposite signs.

16 The figures in this Subsection are taken from Ref. [25].
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Fig. 4.19 The transverse
plane of a noncentral
heavy-ion collision. The
impact parameter of the
collision is denoted by b. The
magnetic field is displayed by
the dashed lines

In a nucleus-nucleus collision the magnetic field will be a superposition of
solenoidal fields from different moving charges. The collision geometry for a
peripheral collision is shown in Fig. 4.19 in the transverse plane. The overlapping
strongly-interacting region (participants) has an “almond”-like shape. The nuclear
region outside this almond (shaded in Fig. 4.19) corresponds to spectator matter
which is the dominant source of the electromagnetic field at the very beginning
of the nuclear collision. Note that in the transport calculation the particles are
subdivided into target and projectile spectators and participants not geometrically
but dynamically: spectators are nucleons which did not yet suffer a collision.

The time evolution of the magnetic field eBy(x, y = 0, z) for Au+Au collisions
at the colliding energy

√
sNN =200 GeV and the impact parameter b =10 fm is

shown in Fig. 4.20. If the impact parameter direction is taken as the x axis (as in
the present calculations), then the magnetic field will be directed along the y-axis
perpendicularly to the reaction plane (z− x). The geometry of the colliding system
at the moment considered is demonstrated by points in the (z − x) plane where
every point corresponds to a spectator nucleon. It is seen that the largest values of
eBy ∼ 5m2

π are reached in the beginning of the collision for a very short time
corresponding to the maximal overlap of the colliding ions. This is an extremely
high magnetic field since m2

π ≈ 1018G. The first panel in Fig. 4.20 is taken at a
very early compression stage with t =0.01 fm/c. The time t =0.05 fm/c is close to
the maximal overlap and the magnetic field here is maximal, too. Then the system
expands (note the different z-scales in different panels of Fig. 4.20) and the magnetic
field decreases. For b =0 the overlap time is maximal and roughly given by 2R/γc—
with γc denoting the Lorentz γ factor—which for our case is about 0.15 fm/c. For
peripheral collisions this time is even shorter.

Globally, the spatial distribution of the magnetic field is inhomogeneous and
Lorentz-contracted along the z-axis. At the compression stage there is a single
maximum which in the expansion stage is splitted into two parts associated with
the spectators. In the transverse direction the bulk magnetic field is limited by two
minima coming from the torqued structure of the single-charge field (see Fig. 4.18).
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AuAu,  √SNN = 200 GeV,  b=10 fm,  t=0.01 fm/c
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Fig. 4.20 Time dependence of the spatial distribution of the magnetic fieldBy at times t created in
Au+Au (

√
s=200 GeV) collisions with the impact parameter b =10 fm. The location of spectator

protons is shown by dots in the (x − z)-plane. The level By = 0 and the projection of its location
on the (x − z) plane are shown by the solid lines

4.6.2 Electromagnetic Fields in Cu+Au Collisions at
√

s= 200 GeV

Before coming to the actual results for asymmetric systems in comparison to those
for symmetric Au+Au reactions some comments with respect to the participant zone
are in order. The initial conversion of energy happens during roughly 0.15 fm/c at
the top RHIC energy for Cu+Au and Au+Au collisions when the nuclei pass through
each other. At this time the energy density in between the leading baryons is very
high due to the fact that the spatial volume is very small and∼ 0.3 fm in longitudinal
extension; the transverse contribution to this volume is given by the overlap area.
Accordingly, the energy density in the participant zone is above critical (≈ 0.5
GeV/fm3), i.e. the degrees of freedom should change from hadronic to partonic ones
according to lattice QCD calculations. Due to the Heisenberg uncertainty relation
this energy density cannot be specified as being due to “particles” since the latter
may form only much later on a timescale of their inverse transverse mass (in their
rest frame). More specifically, only jets at midrapidity with transverse momenta
above pT = 2 GeV/c are expected to appear at t ≈ 0.1 fm/c while a soft parton
with transverse momentum pT = 0.5 GeV/c should be formed after t ≥ 0.5 fm/c.
Although it is not clear what the actual nature of the degrees of freedom is in this
very initial state, there will naturally be a small amount of electric charges due
to charge conservation. On the other hand, if a large amount of electric charges
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Fig. 4.21 Time evolution of event-averaged components of the magnetic (l.h.s.) and electric
(r.h.s.) fields in the center of the overlap region of colliding Cu+Au (solid lines) and Au+Au (dotted
lines) systems at

√
sNN =200 GeV and b = 7 fm. The distributions are averaged over 70 events

(e. g. from the conversion of energy to quarks and antiquarks) are present in the
very beginning of the reaction, then there should be observable signals from this
early electric accelerator. A promising observable here is the directed flow v1(y) of
charged particles with opposite charge, e.g. π+ and π− or protons and antiprotons.
This offers the specific property of the early electric field to check experimentally if
electric charges are already present at this very early instant.

The time evolution of transverse electromagnetic field components is compared
between asymmetric Cu+Au (solid lines) and symmetric Au+Au systems (dotted
lines) in Fig. 4.21 where the l.h.s. displays the magnetic field components and the
r.h.s. the electric field components.17 The maximal values of the magnetic field
components 〈eBy〉 are on the level of a few m2

π being comparable for both systems.
However, in case of the Cu+Au reaction the 〈eEx〉 component of the electric field
is by a factor of ∼5 larger than that for symmetric Au+Au collisions at the same
energy. This strong electric field eEx is only present for about 0.25 fm/c during the
overlap phase of the heavy ions and will act as an electric accelerator on charges
that are present during this time. Note that when charges appear only later together
with the formation of soft partons (t ≥ 0.5 fm/c) there will be no corresponding
charge separation effect on the directed flow! In the case of symmetric collisions
〈Ex〉 ≈ 〈By〉, however, this approximate equality is broken for asymmetric Cu+Au
collisions where 〈eBy〉 > 〈eEx〉.

Figure 4.22, furthermore, shows the distribution in the strength and direction
of electric field components for off-central Cu+Au and Au+Au collisions. This
snapshot is made for the time when both nuclear centers are in the same transverse
plane. This condition corresponds to different times for the two systems considered
which is confirmed by a shift of the component 〈eBy〉 in time (cf. l.h.s. of Fig. 4.21)
where the maximum is reached earlier in Cu+Au collisions. Here we take t ∼0.05
fm/c in view of Fig. 4.21. Note that in Cu+Au collisions a significant electric field

17 The figures in this Subsection are taken from Ref. [26].
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Fig. 4.22 Event-averaged electric field in the transverse plane for a Cu+Au (left panel) and
Au+Au (right panel) collision at

√
sNN = 200 GeV at time t =0.05 fm/c for the impact parameter

b =7 fm. Each vector represents the direction and magnitude of the electric field at that point

eEx is generated in the overlap region of the two nuclei in x-direction, i.e. directed
towards the lighter copper nucleus. The situation is different in collisions of nuclei of
the same size as illustrated in Fig. 4.22 (r.h.s.). In symmetric collisions like Au+Au
or Cu+Cu, the event-averaged electric field does not show a preferential direction
and the magnitude of the electric fields generated in each event is lower, too.

The strong electric field eEx towards the Cu nucleus at the early stage induces
an electric current in the medium (if electric charges are present). As a result, the
charge distribution is modified and a charge dipole is formed. In central Cu+Au
collisions the Cu nucleus is completely embedded within the Au-nucleus and due
to the absence of Cu spectators no sizeable electric current is formed. We note in
passing that the electric field sharply drops after t ∼>0.25 fm/c in free space, while
in conducting matter the time dependence of the field strength is flattening out and
reaches some plateau even up to t ∼ 10 fm/c. The level of this plateau is proportional
to the electric conductivity σ0 and therefore the conductivity effect could be sizeable
in the case of a weakly interacting QGP. However, the electric conductivity—as
evaluated within lattice QCD calculations—is much lower for temperatures from
170 MeV to 250 MeV, which are of relevance for the actual cases. Accordingly,
the strong electric field eEx provides an ultra-short electric pulse on the participant
matter and allows to explore the early time electromagnetic response.

In closing this section we note that the production of real photons and virtual
photons (e+e− or μ+μ− pairs) can be calculated within the transport approach by
including explicitly the bremsstrahlung from elastic collisions of charged particles
as well as the electromagnetic decays of the hadrons produced as well as those from
annihilation channels which are of hadronic or partonic nature.18

18 cf. the review [27].
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Solution of Exercises

Exercise 4.1: Derive Eqs. (4.21)–(4.23) starting from (4.17).

The Dyson–Schwinger equation on the closed-time-path (CTP) reads in matrix form
(4.17):

(
Gc(x, y) G<(x, y)

G>(x, y) Ga(x, y)

)
=
(
Gc0(x, y) G

<
0 (x, y)

G>0 (x, y) G
a
0(x, y)

)
(4.160)

+
(
Gc0(x, x

′) G<0 (x, x ′)
G>0 (x, x

′) Ga0(x, x ′)

)
�
(

�c(x ′, y ′) −�<(x ′, y ′)
−�>(x ′, y ′) �a(x ′, y ′)

)

�
(
Gc(y ′, y) G<(y ′, y)
G>(y ′, y) Ga(y ′, y)

)
,

where the symbol � stands for an intermediate integration over space-time on the
CTP. Multiplying from the left with the negative inverse Klein–Gordon operator in
space-time representation

Ĝ−1
0x = −(∂xμ∂μx +m2), (4.161)

and using (4.20) we obtain

−(∂xμ∂μx +m2)

(
Gc(x, y) G<(x, y)

G>(x, y) Ga(x, y)

)
= δ(x− y)

(
δ(x0 − y0) 0

0 −δ(x0 − y0)

)

+
(
�c(x, y ′) −�<(x, y ′)
�>(x, y ′) −�a(x, y ′)

)
�
(
Gc(y ′, y) G<(y ′, y)
G>(y ′, y) Ga(y ′, y)

)
. (4.162)

Multiplying out the matrices we obtain for the independent matrix elements:

− (∂xμ∂μx +m2)Gc(x, y)

= δ(x − y)+�c(x, y ′)�Gc(y ′, y)−�<(x, y ′)�G>(y ′, y), (4.163)

− (∂xμ∂μx +m2)G<(x, y)

= �c(x, y ′)�G<(y ′, y)− �<(x, y ′)�Ga(y ′, y), (4.164)

− (∂xμ∂μx +m2)G>(x, y)

= �>(x, y ′)�Gc(y ′, y)− �a(x, y ′)�G>(y ′, y), (4.165)
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− (∂xμ∂μx +m2)Ga(x, y)

= −δ(x − y)+�>(x, y ′)�G<(y ′, x)−�a(x, y ′)�Ga(y ′, y). (4.166)

These equations are identical to Eqs. (4.21)–(4.23) when employing the identities
(4.14)

FR(x, y) = Fc(x, y)− F<(x, y) = F>(x, y)− Fa(x, y) , (4.167)

FA(x, y) = Fc(x, y)− F>(x, y) = F<(x, y)− Fa(x, y) ,

which will be shown in the following.
We obtain for the retarded propagator

− (∂xμ∂μx +m2)GR(x, y) = −(∂xμ∂μx +m2)(Gc(x, y)−G<(x, y)) (4.168)

= δ(x − y)+�c(x, y ′)�Gc(y ′, y)−�<(x, y ′)�G>(y ′, y)
−�c(x, y ′)�G<(y ′, y)+�<(x, y ′)�Ga(y ′, y)
= δ(x − y)+�c(x, y ′)� (Gc(y ′, y)−G<(y ′, y))
−�<(x, y ′)� (G>(y ′, y)−Ga(y ′, y))
= δ(x − y)+ (�c(x, y ′)− �<(x, y ′))�GR(y ′, y)
= δ(x − y)+�R(x, y ′)�GR(y ′, y).

For the advanced propagator we obtain

− (∂xμ∂μx +m2)GA(x, y) = −(∂xμ∂μx +m2)(Gc(x, y)−G>(x, y)) (4.169)

= δ(x − y)+�c(x, y ′)�Gc(y ′, y)−�<(x, y ′)�G>(y ′, y)
−�>(x, y ′)�Gc(y ′, y)+�a(x, y ′)�G>(y ′, y)
= δ(x − y)+ (�c(x, y ′)−�>(x, y ′))�Gc(y ′, y)− (�<(x, y ′)
−�a(x, y ′))�G>(y ′, y)δ(x − y)
+�A(x, y ′)�Gc(y ′, y)−�A(x, y ′)�G>(y ′, y)
= δ(x − y)+�A(x, y ′)�GA(y ′, y).

For the off-diagonal elements we obtain:

− (∂xμ∂μx +m2)G<(x, y)=�c(x, y ′)�G<(y ′, y) (4.170)

− �<(x, y ′)�Ga(y ′, y)
− �<(x, y ′)�G<(y ′, y)+ �<(x, y ′)�G<(y ′, y)
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= (�c(x, y ′)−�<(x, y ′))�G<(y ′, y)
+ �<(x, y ′)� (G<(y ′, y)−Ga(y ′, y))
= �R(x, y ′)�G<(y ′, y)+�<(x, y ′)�GA(y ′, y)

and

− (∂xμ∂μx +m2)G>(x, y) = �>(x, y ′)�Gc(y ′, y)−�a(x, y ′)�G>(y ′, y)
(4.171)

+�>(x, y ′)�G>(y ′, y)−�>(x, y ′)�G>(y ′, y)
= (�>(x, y ′)−�a(x, y ′))�G>(y ′, y)
+�>(x, y ′)� (Gc(y ′, y)−G>(y ′, y))
= �R(x, y ′)�G>(y ′, y)+�>(x, y ′)�GA(y ′, y),

which completes the proof.

Exercise 4.2: Show that the negative imaginary part of the propagator
GF (p) = 1/(p2

0−p2−M2+ i2γp0) (for γ > 0) can be written in relativistic
Breit–Wigner form as

2γp0

(p2
0 − p2 −M2)2 + 4γ 2p2

0

and is normalized to unity for all momenta p, i.e.

−
∫ ∞
−∞

dp0

2π
2p0 �GF (p0,p) = 1.

The propagator in momentum space

GF (p) = 1

p2
0 − p2 −M2 + i2γp0

= p2
0 − p2 −M2 − i2γp0

(p2
0 − p2 −M2)2 + 4γ 2p2

0

(4.172)

has the negative imaginary part

− �GF (p) = 2γp0

(p2
0 − p2 −M2)2 + 4γ 2p2

0

. (4.173)
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To prove the normalization it is useful to rewrite (4.173) as

−�GF(p) = 2γp0

(p2
0 − p2 −M2)2 + 4γ 2p2

0

(4.174)

= γ

2E

(
1

(p0 − E)2 + γ 2
− 1

(p0 + E)2 + γ 2

)

= γ

2E

(
1

(p0 − E − iγ )(p0 − E + iγ )

− 1

(p0 + E − iγ )(p0 + E + iγ )
)

with E = √p2 +M2 − γ 2 which allows to identify the poles in the complex p0
plane at ±E ± iγ . In (4.174) we have used the identity

(p2
0 − p2 −M2)2 + 4γ 2p2

0 = (p2
0 + 2p0E + E2 + γ 2)(p2

0 − 2p0E + E2 + γ 2)

(4.175)

which can be shown in a straight forward way.
We note in passing that the real part of the propagator can be written as:

�GF (p) = p2
0 − p2 −M2

(p2
0 − p2 −M2)2 + 4γ 2p2

0

(4.176)

= p
2
0 − p2 −M2

4p0E

(
1

(p0 − E)2 + γ 2 −
1

(p0 + E)2 + γ 2

)

= p
2
0 − p2 −M2

4p0E

(
1

(p0 − E − iγ )(p0 − E + iγ )

− 1

(p0 + E − iγ )(p0 + E + iγ )
)
.

The normalization of the imaginary part is obtained by closing the contour in the
upper half plane and inserting the residues:

−
∫ ∞
−∞

dp0

2π
2p0 �GF (p0,p) (4.177)

=
∮
dp0

2π
2p0

γ

2E

(
1

(p0 − E − iγ )(p0 − E + iγ )
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− 1

(p0 + E − iγ )(p0 + E + iγ )
)

= 2πi

2π

−i
2E
((E + iγ )+ (E − iγ )) = 2E

2E
= 1

for all p which guarantees a quasiparticle interpretation.

Exercise 4.3: Compute the propagator for static massive fields, i.e. the
solution of

(−�+M2)Gf (x) = δ3(x).

The equation for Gf in case of static massive fields,

(−�+M2)Gf (x) = δ3(x) , (4.178)

reads in momentum space

(p2 +M2)Gf (p) = 1 (4.179)

and leads to

Gf (p) = 1

p2 +M2 . (4.180)

The propagator of the system in coordinate space (for R = |x|, p = |p|) then is
given by a Fourier transformation:

Gf (x) =
∫
d3p

(2π)3
exp(ip · x)
p2 +M2 =

∫ ∞
0
p2 dp

(2π)2

∫ 1

−1
dξ

exp(ipRξ)

p2 +M2 (4.181)

=
∫ ∞

0
p2 dp

(2π)2
exp(ipR)− exp(−ipR)

ipR

1

p2 +M2

=
∫ ∞
−∞
p
dp

(2π)2
exp(ipR)− exp(−ipR)

2iR

1

(p − iM)(p + iM)

= 2πi
1

(2π)2

(
iM

exp(−MR)
2iM2iR

+ (iM)exp(−MR)
2iR2iM

)

= exp(−MR)
4πR

= Gf (R)
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by integrating over the poles at p = iM in the upper half plane and p = −iM in
the lower half plane. Furthermore, we have used that the integrand is even in p.

Exercise 4.4: Derive the propagator for a massive scalar field of finite
lifetime γ−1 in its rest frame, i.e. the solution of

(
∂2

∂t2
−�+M2 + 2γ

∂

∂t

)
Gret (x − x ′) = δ4(x − x ′)

for γ > 0.

For the solution of

(
∂2

∂t2
−�+M2 + 2γ

∂

∂t

)
Gret (x − x ′) = δ4(x − x ′) (4.182)

we perform a Fourier transformation to obtain the propagator in momentum space:

Gret (p0,p) = − 1

p2
0 − p2 −M2 + 2iγp0

. (4.183)

The retarded propagator then reads (for y = (t, y) = x − x ′, R = |y|)

Gret (y) = −
∫ ∞
−∞

dp0

2π

∫
d3p

(2π)3
exp(−ip0t + ip · y)
p2

0 − p2 −M2 + i2γp0
(4.184)

= −
∫ ∞
−∞

dp0

2π

∫
d3p

(2π)3
exp(−ip0t + ip · y)

(p0 − E1(p2))(p0 − E2(p2))

with

E1(p
2) =

√
p2 +M2 − γ 2 − iγ = E0(p

2)− iγ ; E2(p
2) = −E0(p

2)− iγ .
(4.185)

The integration over p0 gives (for t ≥ 0—two poles in the lower plane—since
�p0 < 0)

Gret (y) = i
∫
d3p

(2π)3

(
exp(−iE1(p

2)t)

E1(p2)− E2(p2)
+ exp(−iE2(p

2)t)

E2(p2)− E1(p2)

)
exp(+ip · y)

(4.186)

= i
∫
d3p

(2π)3

(
exp(−iE0(p

2)t)

2E0(p2)
− exp(iE0(p

2)t)

2E0(p2)

)
exp(−γ t+ip · y) �(t)
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=
∫ ∞

0

dp

(2π)2
p2
∫ 1

−1
dξ

sin(E0(p
2)t)

E0(p2)
exp(−γ t + ipR ξ) �(t)

=
∫ ∞

0

dp

(2π)2
p2 exp(ipR)− exp(−ipR)

ipR

sin(E0(p
2)t)

E0(p2)
exp(−γ t) �(t)

= 2
∫ ∞

0

dp

(2π)2
p

sin(pR)

R

sin(E0(p
2)t)

E0(p2)
exp(−γ t) �(t)

= exp(−γ t)
R

�(t)

∫ ∞
−∞

dp

(2π)2
p

E0(p2)
sin(pR) sin(E0(p

2)t)

for pR = |p||y|.
The remaining integral over dp has a singular contribution on the light cone and

a regular part on and within the light cone. The singular part is easily seen in the
limit E0(p

2) = p, i.e. forM = γ = 0:

1

R

∫ ∞
−∞

dp

(2π)2
sin(pR) sin(pt) (4.187)

= −1

4R

∫ ∞
−∞

dp

(2π)2
(exp(ipR)− exp(−ipR)) (exp(ipt)− exp(−ipt))

= −1

4R

∫ ∞
−∞

dp

(2π)2
(exp(ip(R + t))− exp(ip(R − t))

− exp(−ip(R − t)+ exp(−ip(R + t))

= −1

4πR
(δ(t + R)− δ(t − R)) = 1

2π
δ(t2 − R2).

The regular part is obtained by subtracting the δ-term (4.187) from the propagator

Ireg =
∫ ∞
−∞

dp

(2π)2
sin(pR)

R

(
p

E0(p2)
sin(E0(p

2)t)− sin(pt)

)
(4.188)

and one obtains

Ireg = −�(t2 − R2)
M∗

4π
√
t2 − R2

J1(M
∗√t2 − R2), (4.189)

where J1(x) is the Bessel function and M∗ = √M2 − γ 2. Note that the integral
(4.189) vanishes outside the light cone. By adding (4.187) and (4.189) we obtain
Gret (t

2 − R2, R,M) with the additional factor exp(−γ t)�(t), using

δ(t2 − R2)�(t) = δ((t − R)(t + R))�(t) = δ(t − R)
2R

, (4.190)



172 4 Relativistic Dynamics and Off-Shell Transport

i.e.

Gret (y) =
(
δ(t − R)

4πR
−�(t2 − R2)

M∗

4π
√
t2 − R2

J1(M
∗√t2 − R2)

)

(4.191)

× exp(−γ t)�(t).

We may also obtain the result for the regular part of the propagator by searching
for the solution of the homogenous equation

(
∂2

∂t2
−�+M2

)
Gh(x) = 0 (4.192)

with x = (t, r). To this aim we introduce the variable

ξ =
√
t2 − R2 (4.193)

with R = |r| and search for a solution depending only on ξ , i.e.

Gh(x) = f (ξ)
ξ
. (4.194)

In this case (4.192) reduces to

(
∂2

∂t2
− ∂2

∂R2 −
2

R

∂

∂R
+M2

)
f (ξ)

ξ

= f (ξ)
(
∂2

∂t2
− ∂2

∂R2

)
1

ξ
+ 1

ξ

(
∂2

∂t2
− ∂2

∂R2

)
f (ξ)

+ 2

(
∂

∂t

1

ξ

)
∂

∂t
f (ξ)− 2

(
∂

∂R

1

ξ

)
∂

∂R
f (ξ) (4.195)

− 2

R
f (ξ)

∂

∂R

1

ξ
− 2

Rξ

∂

∂R
f (ξ)+M2 f (ξ)

ξ
= 0.

We need

∂

∂t
f (ξ) = t

ξ

∂

∂ξ
f (ξ); ∂

∂R
f (ξ) = −R

ξ

∂

∂ξ
f (ξ); (4.196)

∂2

∂t2
f (ξ) = t

2

ξ2

∂2

∂ξ2 f (ξ)−
t2

ξ3

∂

∂ξ
f (ξ)+ 1

ξ

∂

∂ξ
f (ξ);

∂2

∂R2 f (ξ) =
R2

ξ2

∂2

∂ξ2 f (ξ)−
R2

ξ3

∂

∂ξ
f (ξ)− 1

ξ

∂

∂ξ
f (ξ),
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giving

(
∂2

∂t2
− ∂2

∂R2

)
f (ξ) = ∂2

∂ξ2 f (ξ)−
1

ξ

∂

∂ξ
f (ξ)+ 2

ξ

∂

∂ξ
f (ξ)

= ∂2

∂ξ2 f (ξ)+
1

ξ

∂

∂ξ
f (ξ). (4.197)

Furthermore,

∂

∂t

1

ξ
= − t

ξ3 ;
∂

∂R

1

ξ
= R

ξ3 ; (4.198)

∂2

∂t2

1

ξ
=− 1

ξ3 +
3t2

ξ5 ,
∂2

∂R2

1

ξ
= 1

ξ3 +
3R2

ξ5 ,

(
∂2

∂t2
− ∂2

∂R2

)
1

ξ
=− 2

ξ3 +
3

ξ3 =
1

ξ3 .

(
∂

∂t

1

ξ

)
∂

∂t
f (ξ) = − t

ξ3

t

ξ

∂

∂ξ
f (ξ) = − t

2

ξ4

∂

∂ξ
f (ξ),

(
∂

∂R

1

ξ

)
∂

∂R
f (ξ) = − R

ξ3

R

ξ

∂

∂ξ
f (ξ) = −R

2

ξ4

∂

∂ξ
f (ξ),

2

(
∂

∂t

1

ξ

)
∂

∂t
f (ξ)− 2

(
∂

∂R

1

ξ

)
∂

∂R
f (ξ) = − 2

ξ2

∂

∂ξ
f (ξ). (4.199)

We finally use

− 2

R
f (ξ)

∂

∂R

1

ξ
− 2

Rξ

∂

∂R
f (ξ) = − 2

R
f (ξ)

R

ξ3 +
2

ξ2

∂

∂ξ
f (ξ)

= − 2

ξ3 f (ξ)+
2

ξ2

∂

∂ξ
f (ξ). (4.200)

Adding all terms we end up with

1

ξ

∂2

∂ξ2 f (ξ)+
1

ξ2

∂

∂ξ
f (ξ)+ 1

ξ3 f (ξ)−
2

ξ2

∂

∂ξ
f (ξ)− 2

ξ3 f (ξ)

+ 2

ξ2

∂

∂ξ
f (ξ)+M2 f (ξ)

ξ
= 0,

i.e. for ξ �= 0:

(
1

ξ

∂2

∂ξ2 +
1

ξ2

∂

∂ξ
− 1

ξ3 +
M2

ξ

)
f (ξ) = 0. (4.201)
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Multiplying (4.201) by ξ3 we obtain for ξ �= 0:

(
ξ2 ∂

2

∂ξ2
+ ξ ∂
∂ξ
− 1+ ξ2M2

)
f (ξ) = 0, (4.202)

which suggests to introduce the variable z = Mξ giving

(
z2 ∂

2

∂z2 + z
∂

∂z
− 1+ z2

)
f (z) = 0. (4.203)

The solution of Eq. (4.203) is given by the Bessel function J1(z) which has the
expansion (and representation)

J1(z) =
∞∑
n=0

(−1)n

n!(n+ 1)! (
z

2
)2n+1 = 1

π

∫ π
0
dτ cos(τ − z sin(τ )). (4.204)

One thus obtains for the regular part

Gh(x) = −�(ξ2)
M

4πξ
J1(Mξ) = −�(t2 − R2)

M

4π
√
t2 − R2

J1(M
√
t2 − R2)

(4.205)

using (for t > R)

δ(ξ2) = δ(t2 − R2) = δ((t − R)(t + R)) = δ(t − R)
2R

.

Replacing M by M∗ = √
M2 − γ 2 in case of γ > 0 we regain the result in

Eq. (4.189). Note that the regular part (inside the light cone) vanishes for critical
damping (M∗ = 0), however, the solution stays valid also in case of overcritical
damping γ 2 > M2.

Exercise 4.5: Derive the retarded propagator for the wave equation

∂μ∂
μGret (x, x

′) = δ4(x−x′) ≡
(

1

c2

∂2

∂t2
−�r

)
Gret (r− r′; t− t ′) = δ(t− t ′)δ3(r− r′).

This problem corresponds to the previous exercise for the caseM = γ = 0 and
leads directly to (x = (t, r))

Gret (τ, R) = δ(τ − R/c)
4πR

�(τ) (4.206)
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with τ = t − t ′ and R = |r− r′|. However, it is instructive to work out the solution
alternatively. Since the wave equation

∂μ∂
μGret (x, x

′) = δ4(x − x ′) (4.207)

is invariant with respect to space-time shifts the propagatorGret (x, x ′) is a function
of r− r′ and τ = (t − t ′). Due to causality, furthermore, it must vanish for t < t ′.

Since the inhomogeneity of the wave equation is a δ-function in space-time its
solution is a spherical wave. Accordingly we start with the Ansatz:

Gret (R, τ ) = g(τ − R/c)
R

= g(t − t
′ − |r− r′|/c)
|r− r′| (4.208)

with R = |r− r′|. In order to determine the function g we consider:

�Gret = g�( 1

R
)+ 1

R
�g + 2∇( 1

R
) · ∇g

= −4πg δ(R)+ 1

R

∂2

∂R2
g + 2

R2

∂

∂R
g − 2

R2

∂

∂R
g (4.209)

using

� = ∂2

∂R2 +
2

R

∂

∂R
+ 1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

R2 sin2 θ

∂2

∂φ2 (4.210)

= ∂2

∂R2 +
2

R

∂

∂R
+ angular part

and

∂g

∂x
= ∂g
∂R
· x
R
,
∂g

∂y
= ∂g
∂R
· y
R
,
∂g

∂z
= ∂g
∂R
· z
R
. (4.211)

This leads to

∂μ∂
μG = 4πg(τ − R/c) δ3(R), (4.212)

since

1

R

(
∂2

∂R2 −
1

c2

∂2

∂τ 2

)
g(τ − R/c) = 0 (4.213)

for arbitrary functions g(τ − R/c). By comparison with (4.207) we obtain:

4πg(τ − R/c) = δ(τ − R/c) (4.214)
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or:

Gret (r− r′; t − t ′) = δ(t − t
′ − |r− r′|/c)

4π |r− r′| for t > t ′ (4.215)

G(r− r′; t − t ′) = 0 for t < t ′,

which is identical to (4.206).
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AThe Time Evolution Operator

In order to describe the time evolution of a quantum system different “pictures” may
be employed which in principle all are equivalent but in practice are employed in
different expansion schemes. We will start with the

A.1 Schrödinger Picture

Here the starting point is the time-dependent Schrödinger equation

i
∂

∂t
|�(t)〉 = H |�(t)〉, (A.1)

which describes the dynamical evolution of the system by the (N-body) Hamiltonian
H . If the vector |�(t0)〉, which describes the state of the system at time t0, is known
then Eq. (A.1) uniquely defines |�(t)〉 for any other time t �= t0. Accordingly, there
must be a unique transformation

|�(t)〉 = U(t, t0)|�(t0)〉 (A.2)

with a linear operator U(t, t0) due to the linearity of Eq. (A.1). Since the Hamilto-
nian H must be self-adjoint we get:

d

dt
〈�(t)|�(t)〉 = 0, (A.3)

or

〈�(t)|�(t)〉 = 〈�(t0)|�(t0)〉 = 〈�(t0)|U†(t, t0)U(t, t0)|�(t0)〉. (A.4)
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Accordingly,U(t, t0) is a unitary operator, i.e.

U†(t, t0)U(t, t0) = 1H, (A.5)

where 1H denotes the identity in the Hilbert space H. U(t, t0) is denoted as time
evolution operator and as in case of rotations or spatial translations defines a group
with

U−1(t, t0) = U†(t, t0). (A.6)

As in case of spatial translations this group is abelian contrary to rotations.
Inserting (A.2) in (A.1) we get:

i
∂

∂t
U(t, t0)|�(t0)〉 = H U(t, t0)|�(t0)〉. (A.7)

Since the time t0 is arbitrary one obtains the operator equation

i
∂

∂t
U(t, t0) = H U(t, t0). (A.8)

It is useful to consider two cases separately:

1. If H does not depend on time t the solution is simply given by

U(t, t0) = exp(−iH (t − t0)), (A.9)

as one finds out by differentiation of (A.9) with respect to t . In case of an
eigenvector |�E(t0)〉 of H with energy E we have

U(t, t0)|�E(t0)〉 = exp(−iE(t − t0))|�E(t0)〉, (A.10)

i.e. the time evolution is described by a phase shift.
2. In case H depends on t , i.e. H = H(t), it is useful to consider the integral

equation,

U(t, t0) = 1H − i
∫ t
t0

dt ′ H(t ′) U(t ′, t0), (A.11)

where the boundary condition U(t0, t0) = 1H is employed explicitly. Equation
(A.11) practically can be solved by iteration. A formal solution is given by

U(t, t0) = T
(

exp

[
−i
∫ t
t0

dt ′ H(t ′)
])
=
∞∑
n=0

1

n!T
[
−i
∫ t
t0

dt ′ H(t ′)
]n
,

(A.12)
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where T denotes the time-ordering operator which places all operators at lower
times to the right.

Instead of time-dependent Hilbert vectors in the Schrödinger picture the

A.2 Heisenberg Picture

employs time-independent Hilbert vectors, however, explicitly time-dependent
operators. The equations of motion for the operators then replace equation (A.1).
To obtain the latter equations of motion one considers the expectation value of an
operator A in the state |�(t)〉,

〈�(t)|A(t)|�(t)〉 = 〈�(t0)|U†(t, t0)A(t)U(t, t0)|�(t0)〉. (A.13)

In this case the operator A(t) may also explicitly depend on time t , which is
useful for unclosed systems, i.e. for systems in contact with some time-dependent
environment. In the Heisenberg picture one uses the Hilbert vector

|�h〉 =: |�(t0)〉, (A.14)

which fixes the system at some time t0, and represents the observable by the time-
dependent operator

Ah(t) =: U†(t, t0)A(t)U(t, t0). (A.15)

The expectation value of A in time then reads

〈A〉t = 〈�h|Ah(t)|�h〉. (A.16)

The time evolution of Ah(t) is obtained from (A.15) and (A.8):

i
∂

∂t
Ah(t) = iU†(t, t0)

(
∂

∂t
A(t)

)
U(t, t0)+ U†(t, t0)[A(t)H −HA(t)]U(t, t0)

(A.17)

= [Ah(t),Hh] + i
(
∂

∂t
A(t)

)
h

,

with

Hh =: U†(t, t0)H U(t, t0) (A.18)
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and
(
∂

∂t
A(t)

)
h

=: U†(t, t0)

(
∂

∂t
A(t)

)
U(t, t0). (A.19)

If the observable C does not explicitly depend on time t , i.e. C �= C(t), it
represents a conserved quantity if

[Ch,Hh] = 0, (A.20)

which is equivalent to

[C,H ] = 0 (A.21)

in the Schrödinger picture.

A.3 Interaction or Dirac Picture

For practical calculations it is useful to change to the Dirac picture. To this aim one
rewrites the Hamiltonian as

H = H0 +H ′(t), (A.22)

with a time independentH0 and known system of eigenvectors. In this case the state

|�D(t)〉 = exp(iH0 t)|�(t)〉 (A.23)

allows to “subtract” the time evolution of the state |�(t)〉 determined by H0 such
that the time evolution of |�(t)〉 is essentially determined byH ′(t). Inserting (A.23)
in (A.1) we get:

i
∂

∂t
|�D(t)〉 = −H0|�D(t)〉 + i exp(iH0t)

∂

∂t
|�(t)〉 (A.24)

= −H0|�D(t)〉 + exp(iH0t) [H0 +H ′]|�(t)〉
= exp(iH0t) H

′(t) exp(−iH0t)|�D(t)〉

or

i
∂

∂t
|�D(t)〉 = H ′D(t)|�D(t)〉 (A.25)

with

H ′D(t) = exp(iH0t) H
′(t) exp(−iH0t). (A.26)



A The Time Evolution Operator 181

Equation (A.25) differs from (A.1) in the respect that only the interaction H ′D(t)
appears and not the full Hamiltonian H(t) as in (A.1); the exponential terms in
(A.26) are known phase factors in the basis of eigenvectors of H0.

In order to obtain an iterative solution of Eq. (A.25) we introduce the time
evolution operator in the Dirac picture by

|�D(t)〉 = UD(t, t0)|�D(t0)〉 (A.27)

and obtain from (A.25)

i
∂

∂t
UD(t, t0) = H ′D(t)UD(t, t0) (A.28)

with the boundary condition UD(t0, t0) = 1H. The corresponding integral equation
for UD(t, t0) reads:

UD(t, t0) = 1H − i
∫ t
t0

dt ′ H ′D(t ′)UD(t ′, t0) (A.29)

and contrary to (A.11) only contains the interaction operator H ′D(t). Accordingly,
an iterative solution of (A.29) should converge fast if H0 already provides some
reasonable approximation to the system. The formal result of such an iteration (with
UD(t, t0) = 1H in 0’th order) is the Dyson series

UD(t, t0) = 1H − i
∫ t
t0

dt ′ H ′D(t ′)−
∫ t
t0

dt2

∫ t2
t0

dt1 H
′
D(t2)H

′
D(t1) · · · (A.30)

= 1H +
∑
n=1

(−i)n
∫ t
t0

dtn

∫ tn
t0

dtn−1

∫ tn−1

t0

dtn−2 · · ·

×
∫ t2
t0

dt1 H
′
D(tn)H

′
D(tn−1) · · ·H ′D(t1)

with

t ≥ tn ≥ . . . . . . ≥ t1 ≥ t0. (A.31)

One has to take care about the sequence of the operators H ′D(tn) H ′D(tn−1) · · ·
H ′D(t1), etc., since for t1 �= t2

[H ′D(t1),H ′D(t2)] �= 0, (A.32)

except for the trivial case [H0, H ′] = 0 and H ′ �= H ′(t).



BTrace Relations for n-Body Correlations

In order to explore (and compute) the different trace relations in Sect. 2.2 we expand
the one-body density matrix ρ and the correlations cn within a complete orthonormal
single-particle basis ϕα(r) ≡ 〈r|α〉 as

ρ(11′; t) =
∑
λλ′
ρλλ′(t)ϕλ(r)ϕ

∗
λ′(r
′), (B.1)

c2(12, 1′2′; t) =
∑
λγ λ′γ ′

Cλγλ′γ ′(t)ϕλ(r1)ϕγ (r2)ϕ
∗
λ′(r
′
1)ϕ
∗
γ ′(r

′
2). (B.2)

The cluster decomposition then reads explicitly for the two-body density matrix

ρ2
αβα′β ′ = ραα′ρββ ′ − ραβ ′ρβα′ + Cαβα′β ′ (B.3)

and for the three-body density matrix

ρ3
αβγα′β ′γ ′ = ραα′ρββ ′ργγ ′ − ραβ ′ρβα′ργγ ′ − ραγ ′ρββ ′ργα′ (B.4)

− ραα′ρβγ ′ργβ ′ + ραγ ′ρβα′ργβ ′ + ραβ ′ρβγ ′ργα′
+ ραα′Cβγβ ′γ ′ − ραβ ′Cβγα′γ ′ − ραγ ′Cβγβ ′α′ + ρββ ′Cαγα′γ ′
− ρβα′Cαγβ ′γ ′ − ρβγ ′Cαγα′β ′
+ ργγ ′Cαβα′β ′ − ργα′Cαβγ ′β ′ − ργβ ′Cαβα′γ ′ + C3

αβγα′β ′γ ′ .

The trace relation between the one-body and two-body density matrices give

ραα′ = 1

N − 1

∑
β

ρ2
αβα′β =

1

N − 1

∑
β

(
ραα′ρββ − ραβρβα′ + Cαβα′β

)
,

(B.5)
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which implies that

∑
β

Cαβα′β = −ραα′ +
∑
β

ραβρβα′ . (B.6)

In case of a basis |α〉 that diagonalizes the one-body density matrix

ραα′ = δαα′ nα, (B.7)

(with the occupation number nα) this reduces to

∑
β

Cαβα′β = −δαα′nα + δαα′n2
α = −δαα′nα(1− nα), (B.8)

i.e.
∑
β Cαβαβ gives the (negative) fluctuation in the particle number nα while the

sum vanishes for α �= α′. Only in case of nα = 0,1 these fluctuations vanish which
implies that the many-body state is described by a single Slater determinant. The
total trace thus gives

∑
αβ

Cαβαβ = −
∑
α

nα(1− nα). (B.9)

The trace relation

ρ2
αβα′β ′ =

1

N − 2

∑
γ

ρ3
αβγα′β ′γ (B.10)

leads to the condition

∑
γ

C3
αβγα′β ′γ = −

∑
γ=γ ′

(
2

N
− Pαγ − Pβγ − Pα′γ ′ − Pβ ′γ ′

)
ργγ ′Cαβα′β ′

(B.11)

= −2Cαβα′β ′ +
∑
γ=γ ′

(Pαγ + Pβγ + Pα′γ ′ + Pβ ′γ ′)ργ γ ′Cαβα′β ′

with the exchange operator Pαβ exchanging the indices to the right. In case of (B.7)
this gives

∑
γ

C3
αβγα′β ′γ = (nα + nβ + nα′ + nβ ′ − 2)Cαβα′β ′, (B.12)
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which in general is nonvanishing. When taking the total trace of C3 we arrive at

∑
αβγ

C3
αβγαβγ = 2

∑
α

(nα(1− nα)2 − n2
α(1− nα)). (B.13)

For completeness we mention that the trace relation

ρ3
αβγα′β ′γ ′ =

1

N − 3

∑
λ

ρ4
αβγ λα′β ′γ ′λ (B.14)

leads to the condition

T r(4=4′)C4(1234, 1′2′3′4′) = −T r(4=4′)(3/A− P14 − P24 − P34 − P1′4′ − P2′4′

− P3′4′)ρ(44′)C3(123, 1′2′3′) (B.15)

+ T r(4=4′)(P14 + P24 + P1′4′

+ P2′4′)C2(34, 3′4′)C2(12, 1′2′)

+ T r(4=4′)(P34 + P3′4′)C2(24, 2′4′)C2(13, 1′3′)

− T r(4=4′)(C2(12, 3′4′)C2(34, 1′2′)

+ C2(23, 1′4′)C2(14, 2′3′)+ C2(24, 1′3′)C2(13, 2′4′)).

This is readily rewritten in terms of matrix elements using the substitution

(1234, 1′2′3′4′)↔ (αβγ δ, α′β ′γ ′δ′). (B.16)

Since the trace relations show that C3 and C4 must be nonvanishing in the general
case one might introduce a specific Ansatz e.g. for C3 in order to close the equations
of motion and (partly) keep the trace relations fulfilled. When using the Ansatz

C3
αβγα′β ′γ ′ = −

1

N − 1

∑
λ=λ′

(
2

N
− Pαλ − Pβλ − Pα′λ′ − Pβ ′λ′

)
ρ2
γ λγ ′λ′ Cαβα′β ′

(B.17)

the sum over γ = γ ′ gives (B.11) such that the trace relation (B.10) is fulfilled. This
Ansatz for C3 is antisymmetric in (1, 2) and (1′, 2′) but not in (1, 3), (2, 3), (1′, 3′),
and (2′, 3′). Moreover, the trace relation (B.11) only holds for particle 3.

As an alternative one might consider the fully antisymmetric Ansatz

C3(123, 1′2′3′) = T r(4=4′)((1− P1′3′ − P2′3′)c2(12, 1′2′)c2(34, 3′4′) (B.18)

+ (1− P1′2′ − P2′3′)c2(13, 1′3′)c2(24, 2′4′)

+ (1− P1′2′ − P1′3′)c2(14, 1′4′)c2(23, 2′3′))
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= T r(4=4′)(c2(12, 1′2′)c2(34, 3′4′)− c2(12, 3′2′)c2(34, 1′4′)

− c2(12, 1′3′)c2(34, 2′4′)

+ c2(13, 1′3′)c2(24, 2′4′)− c2(13, 2′3′)c2(24, 1′4′)− c2(13, 1′2′)c2(24, 3′4′)

+ c2(14, 1′4′)c2(23, 2′3′)− c2(14, 2′4′)c2(23, 1′3′)− c2(14, 3′4′)c2(23, 2′1′)

= c2(12, 1′2′)(ρ2(33′)− ρ(33′))− c2(12, 3′2′)(ρ2(31′)− ρ(31′))

− c2(13, 1′2′)(ρ2(23′)− ρ(23′))

− c2(12, 1′3′)(ρ2(32′)− ρ(32′))+ c2(13, 1′3′)(ρ2(22′)− ρ(22′))

− c2(13, 2′3′)(ρ2(21′)− ρ(21′))+ (ρ2(11′)− ρ(11′))c2(23, 2′3′)

− (ρ2(12′)− ρ(12′))c2(23, 1′3′)− (ρ2(13′)− ρ(13′))c2(23, 2′1′).

Taking the trace over particles 1, 2, and 3 we obtain

T r(1,2,3)C
3(123, 123) (B.19)

= T r(1=1′,3=3′)((ρ
2(11)− ρ(11))(ρ2(33)− ρ(33))

− (ρ2(13)− ρ(13))(ρ2(31)− ρ(31))

− (ρ2(13)− ρ(13))(ρ2(31)− ρ(31)))

+ T r(2=2′,3=3′)(−(ρ2(32)− ρ(32))(ρ2(23)− ρ(23))

− (ρ2(23)− ρ(23))(ρ2(32)− ρ(32))

+ (ρ2(33)− ρ(33))(ρ2(22)− ρ(22)))

+ T r(1=1′,2=2′)(−(ρ2(12)− ρ(12))(ρ2(21)− ρ(21))

+ (ρ2(11)− ρ(11))(ρ2(22)− ρ(22))

− (ρ2(12)− ρ(12))(ρ2(21)− ρ(21))).

In case of a diagonal basis for ρ (B.7) we get

T r(1,2,3)C
3(123, 123) (B.20)

= T r(1,3)((ρ2(11)− ρ(11))(ρ2(33)− ρ(33))

− δ13(ρ
2(13)− ρ(13))(ρ2(31)− ρ(31))

− δ13(ρ
2(13)− ρ(13))(ρ2(31)− ρ(31)))

+ T r(2,3)(−δ23(ρ
2(32)− ρ(32))(ρ2(23)− ρ(23))
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− δ23(ρ
2(23)− ρ(23))(ρ2(32)− ρ(32))

+ (ρ2(33)− ρ(33))(ρ2(22)− ρ(22)))

+ T r(1,2)(−δ12(ρ
2(12)− ρ(12))(ρ2(21)− ρ(21))

+ (ρ2(11)− ρ(11))(ρ2(22)− ρ(22))

− δ12(ρ
2(12)− ρ(12))(ρ2(21)− ρ(21)))

= 3(N2
2 − 2N2N +N2)+ 6T r(1)(n

4
1 − 2n3

1 + n2
1)

with n1 = ρ(11) and

N2 = T r(1)n2
1. (B.21)

This differs, however, from (B.13) and thus does not fulfill the trace relation (B.11).1

It is thus not possible to find an Ansatz for C3 in leading order in ρ and C2 which
is fully antisymmetric, simultaneously closes the equations of motion for C2 and
fulfills the trace relation for C3. It is thus of interest to obtain some explicit numbers
for the traces of C2 and C3.

Some quantitative results for the traces can be obtained for homogenous Fermi
systems in thermal and chemical equilibrium. To this end we consider infinite
nuclear matter consisting of protons and neutrons with two spin projections each
at finite temperature T and chemical potential μ which fixes the energy density
E(T , μ) as well as the Fermion density n(T ,μ). The occupation numbers then read

nα(T ,μ) = (exp((εα − μ)/T )+ 1)−1 (B.22)

with the single-particle energy εα = p2
α/(2M). In Fig. B.1 we display the results for

F2(ε) := n(ε)(1− n(ε)), (B.23)

corresponding to Eq. (B.6) (except for a − sign) and

F3(ε) := 2
(
(n(ε)(1− n(ε))2 − n(ε)2(1− n(ε))

)
(B.24)

corresponding to Eq. (B.13) for a temperature of 5 MeV and μ = 38 MeV. It is
seen that F2 has a maximum at the chemical potential (ε = μ) and F3 is negative
for ε < μ and positive above, however, slightly smaller in magnitude. Due to
the oscillating form of F3(ε) the integral over ε—corresponding to the total trace
(except for degeneracy numbers)—gives only a small value compared to the integral
of F2(ε) over ε.

1 Alternative expressions are discussed in: E. Litvinova and P. Schuck, Phys. Rev. C 100 (2019)
064320; Phys. Rev. C 102 (2020) 034310.
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Fig. B.1 The two-body fluctuation (B.23) (blue line) and the 3-body fluctuation (B.24) (red line)
as a function of the single-particle energy for nuclear matter at a temperature of 5 MeV and
chemical potential μ = 38 MeV



CThe Two-Body Problem in Vacuum

The stationary (two-body) Schrödinger equation for the energy E = h̄ω = ω (h̄ =
1) reads in the center-of-mass system (cms) after separating the constant center-of-
mass motion:

ω|�〉 = (H0 + v)|�〉, (C.1)

where H0 is the non-interacting Hamiltonian and the two-body interaction is
denoted by v. Alternatively, one has to look for the “zeros” in ω of the equation

(ω −H0 − v)|�〉 =: G−1(ω)|�〉 = 0 , (C.2)

which in the nonrelativistic case of two-body interactions v andH0 = T = p2/(2μ)
in the cms (with μ = m/2 denoting the reduced mass) reads in four-momentum
space

(
ω − p2

2μ
− v
)
|�〉 =: G−1(ω,p)|�〉 = 0. (C.3)

In Hilbert space this defines the retarded propagator (in the limit ε → 0+)

G+(ω + iε,p) = 1

ω − p2

2μ − v + iε
= 1

(ω − p2

2μ + iε)[1− v(ω − p2

2μ + iε)−1]
,

(C.4)
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which can be rewritten in the geometric expansion (assuming convergence) as

G+(ω + iε,p) = 1

ω − p2

2μ + iε
∞∑
n=0

⎛
⎝v
⎛
⎝ 1

ω − p2

2μ + iε

⎞
⎠
⎞
⎠
n

(C.5)

=: G+0 (ω + iε,p)
∞∑
n=0

(
vG+0 (ω + iε,p)

)n
,

with the free retarded Green’s function (in the center-of-mass system)

G+0 (ω + iε,p) =
1

ω − p2

2μ + iε
, (C.6)

which is analytic in ω in the complex upper half plane since the poles in ω are in the
lower half plane due to the limit +iε in the denominator. Omitting the arguments
we obtain the Dyson equation

G+ = G+0
∞∑
n=0

(
vG+0

)n = G+0 +G+0 vG+0 +G+0 vG+0 vG+0 + · · · = G+0 +G+0 vG+
(C.7)

= G+0 (1+ vG+) = G+0
1

(1− vG+0 )
= 1

(1−G+0 v)
G+0 .

In momentum-space representation this Dyson equation reads as

G+(p′ − p) = 〈p′|G+(ω)|p〉 = 〈p′|G+0 (ω)|p〉 + 〈p′|G+0 (ω)vG+(ω)|p〉 (C.8)

= δ3(p′ − p)
ω − p′2/2μ+ iε +

∫
d3p1

1

ω − p′2/2μ+ iε v(p
′ − p1)G

+(p1 − p) .

By inversion we obtain alternatively (omitting the (+))

G−1 = G−1
0 (1− vG0) = (1−G0v)G

−1
0 (C.9)

or

G0G
−1 = 1− v . (C.10)

Note that (C.10) is an equation for the two-body Green’s function which is of one-
body type only after separation of the center-of-mass motion!

The (two-body) Green’s function G+ in scattering theory—where we have the
boundary condition of an incoming undistorted wave |�ω〉—generates the scattering
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state of energy ω:

|�+ω 〉 = |�ω〉 +G+0 (ω)v|�+ω 〉 =
∞∑
n=0

(G+0 (ω)v)
n|�ω〉 =: �̂(ω)|�ω〉 (C.11)

with the unitary Moeller operator �̂(ω) which follows

�̂(ω) =
∞∑
n=0

(G+0 (ω)v)
n = 1

1−G+0 (ω)v
. (C.12)

Explicitly we obtain for the matrix elements in coordinate space

〈r|G(+)0 |r′〉 =
∫ ∫

d3q d3q ′ 〈r|q〉〈q|G(+)0 |q′〉〈q′|r′〉 (C.13)

= 1

(2π)3

∫
d3q exp(iq · r) 1

E − q2

2μ + iε
exp(−iq · r′)

= 1

(2π)3
2μ
∫
d3q

exp(iq · (r− r′))
k2 − q2 + iε = 2μ G(+)0 (r, r′);

i.e. the familiar Green’s function in coordinate-space representation. We have used,
furthermore,

〈r|q〉 = 〈q|r〉∗ = (2π)−3/2 exp(iq · r). (C.14)

These operator equations allow to define a T -matrix via

T (ω)|�ω〉 = v|�+ω 〉, (C.15)

which follows the T -matrix (or Born) series

T (ω) = v + vG+(ω)T = v
∞∑
n=0

(G+0 (ω)v)
n = v�̂(ω). (C.16)

Comment Here we only consider stationary systems without the presence of a
third particle in the environment. The two-body density matrix in this case is a pure
ensemble build up from the scattering or bound state |�+ω 〉 by

ρ2 = |�+ω 〉〈�+ω |, ρ20 = |�ω〉〈�ω|, (C.17)

i.e.

ρ2 = �̂(ω)|�ω〉〈�ω|�̂(ω)† = �̂(ω)ρ20�̂(ω)
†. (C.18)
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The matrix elements of the T -matrix in momentum space for the elastic
scattering process p1 + p2 → p′1 + p′2 (omitting discrete quantum numbers) can
be written as

〈p′1p′2|T (ω)|p1p2〉 = δ3(p1 + p2 − p′1 − p′2)T (ω,q), (C.19)

where q = p′1 − p1 is the momentum transfer in the collision and ω denotes the
on-shell energy of the (elastic) collision. Note that in the center-of-mass system we
have p2 = −p1 and p′2 = −p′1.

In lowest order the T -matrix (C.15) is given by the bare interaction v and the
differential cross section reads

dσ(ω)

d�
= μ2

(2π)2
|v(q)v∗(q)A| (C.20)

with the Fourier transform of the bare interaction

v(q) =
∫
d3r exp(−iq · r) v(r). (C.21)

In Eq. (C.20) the index A implies antisymmetrization for identical fermions. In case
of rotational invariance of the interaction we have v(q) = v(|q|) = v(q) and the
momentum transfer q in elastic scattering is related to the scattering angle ϑ by

q = 2k sin(ϑ/2), (C.22)

where k is the absolute momentum in the center-of-mass system, i.e. k2 = 2μEcm
or

Ecm = k2

2μ
. (C.23)

The question arises, however, if the lowest order Born approximation (C.20) is a
suitable approximation in case on nucleon-nucleon scattering. In order to investigate
this issue we study a simple model for the interaction v(r) in case of proton-neutron
scattering such that the antisymmetrization can be discarded:

v(r) = Vr exp(−r2/a2)− Va exp(−r2/b2) (C.24)

with a short-range repulsive and intermediate range attractive part. The Fourier
transform is easily calculated to give

v(q) = Vr(πa2)3/2 exp(−q2a2/4)− Va(πb2)3/2 exp(−q2b2/4) (C.25)
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and the differential cross section reads (after integration over the azimuthal angle φ)

dσ(Ecm)

dϑ
= μ

2

2π
|v(2k sin(ϑ/2))|2. (C.26)

Integration over the angle ϑ gives the total scattering cross section σB ,

σB =
∫ π

0
dϑ sin(ϑ)

dσ(Ecm)

dϑ
=
∫ 1

−1
d cosϑ

dσ(Ecm)

d cosϑ
. (C.27)

In case of low energy scattering only s-wave scattering contributes to the
scattering amplitude f0(k) and the angle integrated cross section is given by

σ(Ecm) = 4π

k2 sin2(δ0(k)) = 4π

2μEcm
sin2(δ0(k)) (C.28)

with the phase shift δ0(k) which has to be extracted from the solution of the radial
Schrödinger equation for angular momentum l = 0,

(
d2

dr2 + k2
)
χ(r) = 2μv(r) χ(r), (C.29)

using the familiar decomposition rψ0(r) = χ(r). A regular solution for χ(r) then
has to vanish for r = 0 since the radial momentum operator must be Hermitian.

For our model case we employ Vr = 700 MeV, Va = 350 MeV, a = 0.35 fm and
b = 0.7 fm. The corresponding interaction is displayed in Fig. C.1 for orientation
explicitly showing a strong short-range repulsion and intermediate range attraction.
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Fig. C.1 The model interaction v(r) for the parameters described in the text
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Fig. C.2 Comparison of the
cross section in the Born
approximation (C.26) (red
line, integrated over the angle
ϑ) with the result from the
phase shift (C.28) (blue line)
as a function of the
center-of-mass energy Ecm
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This choice of parameters does not lead to a bound state for negative energy and
only scattering states for positive energy are physical states. We note in passing that
a bound state of energy∼− 2.25 MeV is obtained when choosing the slightly more
attractive Va ≈ 410 MeV.

The homogenous (and regular) solution of (C.29) is given by ∼ sin(kr) whereas
χ(r) ∼ sin(kr + δ0(k)) for r → ∞. The actual numerical solution of (C.29) on
a finite grid is straight forward and involves an iteration in the phase shift δ0(k)
for fixed momentum k. A comparison of the cross section (C.28) with the result in
Born approximation is shown in Fig. C.2 which shows a huge difference between the
results especially for low energies, thus illustrating the importance of a resummation
of the interaction for low energy scattering. Note that with increasing energy also
higher partial waves (l > 0) additionally contribute to the cross section σ .

The dramatic enhancement at ECM = 5 MeV can be traced back to the sizeable
enhancement of the exact solution ψ0(r) relative to the “free” solution in the range
of the interaction (<1.5 fm) as displayed in Fig. C.3 (l.h.s.). This enhancement
decreases with increasing Ecm and almost vanishes for Ecm = 50 MeV as shown
in Fig. C.3 (r.h.s.). Only a constant phase shift is seen here for r > 2 fm. One
thus can conclude that for low energy scattering the Born approximation gives a
misleading result such that a resummation in Eq. (C.15) has to be performed or the
Schrödinger equation to be solved explicitly. This conclusion does not change very
much when considering two-body scattering in a nuclear environment as considered
e.g. in Sects. 2.4 and 2.5.
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Fig. C.3 Comparison of the wavefunction χ(r) (red lines) with the free solution (green lines) for
Ecm = 5 MeV (l.h.s.) and Ecm = 50 MeV (r.h.s.). The scaled potential v(r) is depicted in terms of
the blue lines for orientation



DPeriodic Boundary Conditions

In this Appendix we discuss a simple model system that allows to solve the off-shell
collision term in Sect. 2.4 numerically and to compare solutions for off-shell and on-
shell scattering. In case of periodic boundary conditions for a homogenous system
in a finite volume of size V = a3 the single-particle eigenstates in coordinate space
(for nucleons) are

〈r|nxnynz, ns, nτ 〉 = 〈r|α〉 = 1

a3/2 exp

(
i
2π

a
(nxx + nyy + nzz)

)
χ(ns)τ (nτ ),

(D.1)

where χ(ns) denote the two orthogonal eigenstates for the spin and τ (nτ ) for
isospin, respectively. By construction these states are orthonormal in all quantum
numbers. The momentum components of particles are given by (i = 1, 2, 3)

pi(ni) = 2πh̄

a
ni (D.2)

and the single-particle energies by

ε(nx, ny, nz) = 2h̄2π2

MNa2
(n2
x + n2

y + n2
z) =: ω̄(n2

x + n2
y + n2

z) (D.3)

when assuming no contributions from spin and isospin projections. HereMN stands
for the nucleon mass. Within this basis the conservation of energy and momentum
in 2-body transitions can be strictly fulfilled and easily controlled via integer
numbers ni for momentum or n2

i for energy. Furthermore, the matrix elements of
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a δ3(r1 − r2)-type interaction are—assuming the interactions again to be diagonal
in spin and isospin:

〈n3
x, n

3
y, n

3
z; n4

x, n
4
y, n

4
z |v|n1

x, n
1
y, n

1
z; n2

x, n
2
y, n

2
z〉 (D.4)

= V0

a6

∫ a/2
−a/2

dx

∫ a/2
−a/2

dy

∫ a/2
−a/2

dz exp

(
−i 2π
a
(n1
x + n2

x − n3
x − n4

x)x

)

× exp

(
−i 2π
a
(n1
y + n2

y − n3
y − n4

y)y

)
exp

(
−i 2π
a
(n1
z + n2

z − n3
z − n4

z)z

)

= V0

a3
δ(n1

x + n2
x − n3

x − n4
x) δ(n

1
y + n2

y − n3
y − n4

y) δ(n
1
z + n2

z − n3
z − n4

z),

which implies momentum conservation in the transitions 1+ 2↔ 3+ 4.
In case of a diagonal density matrix ραα′ = δαα′nα the change in the occupation

numbers nα—not to be mixed with the quantum numbers nx, ny, nz—is given by
the collision term Iαα,

d

dt
nα(t) = Iαα(t) = − i

h̄

∑
β

∑
λγ

[〈αβ|v|λγ 〉Cλγαβ(t)− Cαβλγ (t)〈λγ |v|αβ〉].

(D.5)

When inserting the off-shell solution for C2(t) from (2.103) we get

Iαα(t) = 2

h̄2

∑
β

∑
λγ

∫ t
0
dt ′ cos

(
1

h̄
(εα + εβ − ελ − εγ )(t − t ′)

)
(D.6)

× 〈αβ|v|λγ 〉〈λγ |v|αβ〉A[nλ(t ′)nγ (t ′)n̄α(t ′)n̄β(t ′)
− nα(t ′)nβ(t ′)n̄λ(t ′)n̄γ (t ′)].

Alternatively, when inserting the on-shell solution for C2(t) we end up with

Iαα(t) = 2π

h̄

∑
β

∑
λγ

δ(εα + εβ − ελ − εγ )〈αβ|v|λγ 〉〈λγ |v|αβ〉A (D.7)

× [nλ(t)nγ (t)n̄α(t)n̄β (t)− nα(t)nβ(t)n̄λ(t)n̄γ (t)].



D Periodic Boundary Conditions 199

These expressions can be worked out further in case of periodic boundary conditions
by using (D.3) and (D.4) giving (in the on-shell case)

Iαα(t) = 2π

h̄ω̄

3V 2
0

4a6

∑
β

∑
λγ

δ(m2
α +m2

β −m2
λ −m2

γ )

× δ(n1
x + n2

x − n3
x − n4

x) δ(n
1
y + n2

y − n3
y − n4

y) (D.8)

× δ(n1
z + n2

z − n3
z − n4

z) [nλ(t)nγ (t)n̄α(t)n̄β (t)− nα(t)nβ(t)n̄λ(t)n̄γ (t)]

using the notation

m2
α = (n1

x)
2 + (n1

y)
2 + (n1

z)
2 (D.9)

etc. which (except for a factor ω̄) gives the discrete single-particle energies.
It is of general interest to investigate the validity of the on-shell approximation for

the collision term (D.8) or the differences arising from the use of (D.6) or (D.7) for
some physical observable. To this end we consider a cubic volume of side length a =
10 fm which defines the time-independent basis states and single-particle energies.
As a two-body interaction we assume a local interaction of the form

v(r) = V0 δ
3(r) (D.10)

with some strengthV0. As initial condition we assume a deformed Fermi sphere with
an (angular) averaged Fermi energy of 40 MeV, however, the ellipsoid in momentum
space is twice elongated in z-direction as compared to the perpendicular directions.
The average density amounts to 0.188 fm−3 which is slightly larger than normal
nuclear matter density. Accordingly, the number of “nucleons” in the box is 188,
i.e. 94 protons and neutrons each. As an observable we consider the quadrupole
moment in momentum space

Q2(t) =
∑
α

(2p2
z,α − p2

x,α − p2
y,α) nα(t), (D.11)

which should approachQ2 = 0 for t →∞ due to off-shell or on-shell collisions.
The numerical results for Q2(t) are displayed in Fig. D.1 on a logarithmic scale

for the off-shell solution and the on-shell solution of the collision term employing
V0 = 300 MeV fm3 (upper lines) and V0 = 500 MeV fm3 (lower lines). Here
V0 = 300 MeV fm3 corresponds to an average interaction strength as used in
model calculations for nuclear matter while V0 = 500 MeV fm3 is chosen as a
“very strong” interaction case. As seen from Fig. D.1 in both cases the off-shell
and on-shell results give very similar results for the quadrupole moment since the
contributions from off-shell matrix elements in (D.6) give oscillating contributions
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Fig. D.1 The quadrupole moment Q2(t) (D.11) in the on-shell and off-shell scattering limit for
the couplings V0 = 300 MeV fm3 (upper lines) and V0 = 500 MeV fm3 (lower lines). The results
for V0 = 300 MeV fm3 are practically identical within the linewidth

in time and cancel out to a large extent1 after summing over the states β, λ, γ .
Accordingly, the on-shell collision limit holds well in this simple case with discrete
energy differences, however, there might be physical examples—with a low number
of basis states involved—that may show sizeable off-shell scattering effects.

It is worth noting that the results in Fig. D.1 have been obtained with a very small
time step of �t = 0.0025 fm/c in the off-shell case which is mandatory to achieve
a good conservation of energy. On the other hand, in the on-shell calculation a time
step of 0.5 fm/c already leads to a very good energy conservation. For practical
reasons the on-shell limit of the collision term is thus a very suitable approximation
especially in view of the uncertainty in the strong interaction matrix elements and
the huge gain in CPU performance.

Since the loss term in (D.8) is proportional to nα we can determine the on-shell
collision width for the state α by


α = 2πh̄

h̄ω̄

3V 2
0

4a6

∑
β

∑
λγ

δ(m2
α +m2

β −m2
λ −m2

γ )δ(n
1
x + n2

x − n3
x − n4

x)

× δ(n1
y + n2

y − n3
y − n4

y) δ(n
1
z + n2

z − n3
z − n4

z)nβn̄λn̄γ . (D.12)

1 Note that the states γ are fixed by momentum conservation but the summation over β, λ involves
a large number of states in the present case.
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Fig. D.2 The collisional
width (D.13) as a function of
the energy E relative to
nuclear matter of density
ρ ≈ 0.167 fm−3
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In the continuum limit a→∞ the collision width of a particle with momentum pα
reads for isotropic scattering with a constant cross section σ = μ2

2h̄4
3
4V

2
0 (≈ 32.4 mb

for V0 = 300 MeV fm3)


(pα) = h̄c

(2πh̄)3
d

∫
d3pβ

∫
d� vrel(pα − pβ)

σ

4π
n(pβ )(1− n(p3))(1− n(p4)),

(D.13)

where the final states p3 and p4 are fixed by energy and momentum conservation
except for an angle � = (cos(ϑ), φ) in the center-of-mass which has to be
integrated over. The relative velocity—in the nonrelativistic limit—is given by

vrel(pα − pβ) = |pα − pβ |
MN

(D.14)

while the factor d = 4 in (D.13) stems from summation over spin and isospin.
The width (D.13) is displayed in Fig. D.2 as a function of the kinetic energy
E = p2/(2MN) for the scattering of a nucleon on an occupied Fermi sphere
with Fermi energy EF ≈ 37 MeV simulating symmetric nuclear matter of density
ρ ≈ 0.167 fm−3. For energies below EF the width 
 practically vanishes due to
Pauli blocking and smoothly increases up to about 40 MeV at E = 150 MeV. This
width, however, is small compared to the mass of the nucleon (≈938 MeV) such
that nucleons in this case can be considered as “good quasiparticles.”



EPhase-Space Integrals

The on-shell phase-space integrals incorporated in Sect. 3.2 cover the dynamics of a
multi-particle system to a large extent. The n-body phase-space integral is generally
defined by

Rn(P ;m1, . . . ,mn) =
(

1

(2π)3

)n ∫ n∏
k=1

d3pk

2Ek
(2π)4δ4

⎛
⎝P −

n∑
j=1

pj

⎞
⎠ , (E.1)

with P denoting the total four-momentum, mj the masses of the particles and pj
their four-momenta. Since the phase-space integrals are Lorentz-invariant we will
work in the center-of-mass system (P = 0).

To show (as an example) the behavior of the different n-body phase-space
integrals it is instructive to look e.g. at the consecutive decays in the reaction
pp̄ → πρρ → 3πρ → 5π which are relevant in proton-antiproton annihilation.
Also, this example connects the 3-, 4-, and 5-body phase-space integrals as a
function of the invariant energy above threshold (see below).

For the sake of completeness, we start with the 1-body phase-space integral,

R1(
√
s;m) = 1

(2π)3

∫
d3p

2E
(2π)4δ4(

√
s − E) = π√

s
, (E.2)

where E is the on-shell energy E = √
m2 + p2 and the mass m of the particle

is equal to the invariant energy
√
s. This result shows that the 1-body phase-

space decreases with increasing
√
s. The 2-body phase-space integral can also be
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evaluated analytically,

R2(
√
s;m1,m2) = 1

(2π)2

∫ ∫
d3p1

2E1

d3p2

2E2
δ3(p1 + p2)δ(

√
s − E1 − E2)

(E.3)

= 1

4(2π)2

∫
d3p1

E1E2
δ(
√
s − E1 − E2)

= 1

4(2π)2

∫ ∞
0

dp1

∫ π
0

∫ 2π

0

dφdθ p2
1 sin θ

E1E2
δ(
√
s − E1 − E2)

= 1

4π

∫ ∞
0

dp1 p
2
1√

m2
1 + p2

1

√
m2

2 + p2
1

δ
(√
s − E1 − E2

)
.

The zeros of the δ-function are given by

p0 = ±
√
λ(s,m2

1,m
2
2)

2
√
s

, (E.4)

where only the positive value has to be taken into account. Rewriting the δ-function
as

δ(
√
s − E1 − E2) = δ(p1 − p0)

p1/E1 + p1/E2
(E.5)

and inserting Eqs. (E.4) and (E.5) into Eq. (E.3) we obtain the two-body phase-space
integral

R2(
√
s;m1,m2) = 1

4π

∫ ∞
0

dp1 p1

E1E2

E1E2δ(p1 − p0)

E1 + E2
=
√
λ(s,m2

1,m
2
2)

8πs
,

(E.6)

withE1+E2 = √s from the original δ-function and λ(x, y, z) = (x−y−z)2−4yz.
The typical shape of R2(

√
s,m1,m2) is shown in Fig. E.1 for the masses m1 =

1 GeV and m2 = 2 GeV as a function of the invariant energy above threshold.1 The
upper limit is independent of the masses and is given by 1/(8π).

The on-shell three-body phase-space integral R3(
√
s,m1,m2,m3) is the next

in the hierarchy and a good example for the evaluation of phase-space integrals
of higher order since the n-body decay can be considered as consecutive 2-body

1 The figures in this Appendix are taken from: E. Seifert and W. Cassing, Phys. Rev. C97 (2018)
024913.
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Fig. E.1 Two-body phase-space integral R2 for particles with masses m1 = 1 GeV and m2 =
2 GeV as a function of the invariant energy above threshold

Fig. E.2 Illustration of the subsequent decay of an initial state (black dot) into n particles. The
initial state may consist of m particles since only the invariant mass is relevant for the phase-space
integral due to Lorentz invariance

decays (see Fig. E.2 for an illustration). Note that in Fig. E.2 kn = p and k1 = p1.
A prerequisite in calculating the phase-space integral is that we do not have any
incoming momenta in between the first and final 2-body decay. For the calculation
of the process we employ the recursion relation for phase-space integrals,

Rn(P ) =
∫

d4pn

(2π)3
δ(p2

n −m2
n) Rn−1(P − pn), (E.7)

and also insert the identities

1 =
∫

dM2
n−1δ(M

2
n−1 − k2

n−1), (E.8)

and

1 =
∫

d4kn−1δ
4(P − pn − kn−1). (E.9)
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Fig. E.3 Illustration of the
3-, 4-, and 5-body
phase-space integrals as a
function of the invariant
energy above threshold. The
red solid line shows the
3-body phase-space integral
for πρρ, the blue dashed line
shows the 4-body phase-space
integral for 3πρ and the green
dotted line shows the 5-body
phase-space integral for 5
pions
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The first identity (E.8) gives the mass of the first cluster from which the 4-
momentum pn splits. The second identity ensures energy-momentum conservation
in the splitting process. Inserting both identities into Eq. (E.7) we find

Rn(P ) =
∫

dM2
n−1

∫
d4kn−1

∫
d4pn

(2π)3
δ4(k2

n−1 −M2
n−1)δ

4(p2
n −m2

n)δ
4(P − pn − kn−1)

︸ ︷︷ ︸
R2(P ;mn,Mn−1)/(2π)

Rn−1(kn−1)

(E.10)

=
∫ (Mn−mn)2
(
∑n−1
i=1 mi )

2
dM2

n−1
R2(P ;mn,Mn−1)

2π
Rn−1(kn−1).

With this expression any n-particle phase-space integral can be calculated in a
straight forward fashion as long as the masses mi are known. Note that the last
R2, which one gets after applying Eq. (E.10) several times, has no additional factor
1/(2π). In Fig. E.3 the phase-space integrals for 3, 4 and 5 particles are shown as a
function of the invariant energy above threshold for our example of initial πρρ with
a subsequent decay into 3πρ and a final decay to 5 pions. All phase-space integrals
share a similar shape, only the magnitudes close to threshold vary substantially with
the number of particles.

For practical purposes it is very helpful to have an analytical approximation
for R3(

√
s) with coefficients that can be fitted and tabulated for different mass

combinations,

R3(t,m1,m2,m3) = a1t
a2

(
1− 1

a3t + 1+ a4

)
, (E.11)

where t = √s −m1 −m2 −m3 denotes the invariant energy above threshold. The
parameters a1, a2, a3, and a4 are fitted to the numerical results for R3 from (E.10)
which only have to be computed once.



FKramers–Kronig Relation

The Kramers–Kronig relations are often used to calculate the real part from the
imaginary part (or vice versa) of response functions or retarded propagators in
physical systems, because for stable systems causality implies the analyticity
condition, and alternatively, analyticity implies causality of the corresponding stable
physical system.

We consider a complex function χ(ω) = χ1(ω)+iχ2(ω) of the complex variable
ω , where χ1(ω) and χ2(ω) are real functions, respectively. Furthermore, we assume
that χ(ω) is analytic in the closed upper half plane of ω and vanishes like 1/|ω| (or
faster) for |ω| → ∞. The Kramers–Kronig relations then are given by

χ1(ω) = 1

π
P
∫ ∞
−∞

χ2(ω
′)

ω′ − ω dω
′ (F.1)

and

χ2(ω) = − 1

π
P
∫ ∞
−∞

χ1(ω
′)

ω′ − ω dω
′, (F.2)

where P denotes the Cauchy principal value (see below). The real and imaginary
parts of χ(ω) are thus closely connected and the full function can be reconstructed
just knowing one of its parts.

The proof is based on Cauchy’s residue theorem for complex integration. Let
χ be any analytic function in the closed upper half plane, then the function ω′ →
χ(ω′)/(ω′ − ω) (for real ω) is real and will also be analytic in the upper half of the
plane. The residue theorem then states that

∮
χ(ω′)
ω′ − ω dω

′ = 0 (F.3)
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for any contour within this region. Now choose the contour along the real axis
(starting from −∞), circumvent the pole at ω = ω′ in the upper half plane, and
(for ω → ∞) close with a “large” semicircle in the upper half plane. Then we
decompose the integral into its contributions along each of these three contour
segments and pass them to proper limits. The length of the semicircular segment
increases proportionally to |ω|, but the integral over it vanishes because χ(ω)
vanishes faster than 1/|ω|. We are left with the segments along the real axis and
the half-circle around the pole at ω′. Now we consider the limit of the half-circle
radius r to go to zero which gives

0 =
∮
χ(ω′)
ω′ − ω dω

′ = P
∫ ∞
−∞

χ(ω′)
ω′ − ω dω

′ − iπχ(ω), (F.4)

where the second term in the last expression is obtained using the residue theorem.
By rearranging one arrives at the compact form of the Kramers–Kronig relations,

χ(ω) = 1

iπ
P
∫ ∞
−∞

χ(ω′)
ω′ − ω dω

′. (F.5)

When splitting χ(ω) and equation (F.5) into real and imaginary parts we obtain the
results in Eqs. (F.1) and (F.2).

The Cauchy principal value defines a way to circumvent singularities in the
integrand f (x) along the real x-axis. The Cauchy principal value is defined as
follows: the finite number

lim
ε→0+

[∫ b−ε
a

f (x) dx +
∫ c
b+ε
f (x) dx

]
(F.6)

where b is a point where

∫ b
a

f (x) dx = ±∞ (F.7)

for a < b and
∫ c
b

f (x) dx = ∓∞ (F.8)

for c > b .



GLorentz Transformations, γ -Matrices, and
Dirac-Algebra

A covariant formulation of dynamics has to involve well-defined transformation
properties of physical quantities (operators) under Lorentz transformations. The
latter involve Lorentz boost with velocity �β as well as spatial rotations with angle
�φ. A convenient formulation is achieved in a pseudo-Euclidian vector space of
dimension 4 (Minkowski space) such that Lorentz transformations are represented
by 4×4 matrices�μν . A suitable notation then is given by representing space-time
and energy-momentum by four-vectors (in Minkowski space)

x = (ct, r)T ≡ (ct, x)T =

⎛
⎜⎜⎝
ct

x

y

z

⎞
⎟⎟⎠ , q = (ω/c,q)T =

⎛
⎜⎜⎝
ω/c

qx

qy

qz

⎞
⎟⎟⎠ (G.1)

with contra-variant components

x0 = ct, x1 = x, x2 = y, x3 = z; q0 = ω/c, q1 = qx, q2 = qy, q3 = qz
(G.2)

and covariant components

x0 = x0 = ct, x1 = −x, x2 = −y, x3 = −z;
q0 = ω/c, q1 = −qx, q2 = −qy, q3 = −qz . (G.3)

The transformation between the covariant and contra-variant vectors is given by

xμ =
3∑
ν=0

gμνx
ν =: gμνxν (G.4)
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(for μ = 0, 1, 2, 3) with the (Lorentz-invariant) pseudo-metric tensor

(gμν) = (gμν) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (G.5)

In order to further simplify the notation we have introduced in (G.4) the Einstein
convention which implies to sum over all indices that appear twice. However, the
indices have to be upper and lower indices separately! Nevertheless, we will keep
the explicit summation in the following if not indicated else.

The squared length of a space-time vector then can be written as

3∑
μ,ν=0

gμνx
μxν =

3∑
μ=0

xμxμ =
3∑
μ=0

x ′μx ′μ, (G.6)

which has to be invariant under Lorentz transformations

x ′μ =
∑
ν

�μνx
ν; μ, ν = 0, 1, 2, 3 (G.7)

implying for the vector (x0, x1, x2, x3)T :

3∑
μ=0

xμxμ = c2t2 − r2 = const. (G.8)

This condition requires that

∑
μ,ν

gμν�
μ
ρ�

ν
σ =

∑
μ,ν

�μρgμν�
ν
σ = gρσ . (G.9)

When written as a matrix-multiplication this reads as

�T g� = g. (G.10)

By multiplication from the left with g we get (with g2 = 14)

(g�T g)� = 14 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (G.11)
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which implies that the Lorentz transformation can be inverted and

�−1 = g�T g. (G.12)

Equation (G.9) follows from the requirement that the length squared (G.6) is
invariant with respect to Lorentz transformations:

∑
μ

x′μx′μ =
∑
μν

gμνx
′μx′ν =

∑
μ,ν,ρ,σ

gμν�
μ
ρx
ρ�νσ x

σ =
∑
ρσ

gρσ x
ρxσ =

∑
ρ

xρx
ρ.

(G.13)

For a Lorentz transformation in x1-direction with velocity β = v/c the matrix�μν
has the form

�μν =

⎛
⎜⎜⎝
γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (G.14)

with

det� = γ 2 − γ 2β2 = γ 2(1− β2) = 1 (G.15)

for γ 2 = 1/(1 − β2). This “boost” in x1-direction can also be parametrized with
help of the “rapidity” ξ as:1

�μν(ξ) =

⎛
⎜⎜⎝

cosh ξ − sinh ξ 0 0
− sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (G.16)

A comparison with (G.14) gives the relation to the velocity:

cosh ξ = γ, sinh ξ = γβ ⇒ β = sinh ξ

cosh ξ
= tanh ξ. (G.17)

The advantage of this parametrization is that subsequent boosts are additive in ξ :

�(ξ2)�(ξ1) = �(ξ1 + ξ2). (G.18)

1 In the context of heavy-ion physics the rapidity conventionally is denoted by y ≡ ξ .
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With (G.17) this directly gives the relation for the addition of the velocities:

β12 = tanh(ξ1 + ξ2) = sinh(ξ1 + ξ2)
cosh(ξ1 + ξ2) =

sinh(ξ1) cosh(ξ2)+ sinh(ξ2) cosh(ξ1)

cosh(ξ1) cosh(ξ2)+ sinh(ξ1) sinh(ξ2)

= β1 + β2

1+ β1β2
. (G.19)

The general form of the Lorentz transformation is obtained from (G.14) by a
rotation of the spatial components in terms of a 3×3 matrix R3( �φ) since the Lorentz
transformations form a ‘group’:

1. Two subsequent Lorentz transformations,

x ′μ =
∑
ν

�μνx
ν, x ′′ρ =

∑
μ

�′ρμx ′μ, (G.20)

give

x ′′ρ =
∑
μ,ν

�′ρμ�μνxν =
∑
ν

�′′ρνxν, (G.21)

which is again a Lorentz transformation since for the matrices �′′, �′ and � we
get:

�′′T g�′′ = (�′�)T g(�′�) = �T �′T g�′︸ ︷︷ ︸
g

� = �T g� = g, (G.22)

which holds since

�′T g�′ = �T g� = g. (G.23)

2. The neutral element is the 4× 4 unity matrix 14 for Lorentz-boosts with velocity
v = 0.

3. As shown above there is an inverse transformation for each transformation �.
This follows also from (G.9) with help of the determinant

det(�T g�) = det�T detg det� = (det�)2 detg = detg = −1, (G.24)

i.e.

(det�)2 = 1 ⇒ det� = ±1 �= 0. (G.25)

4. Since matrix multiplications are associative this also holds for Lorentz transfor-
mations.
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Orthogonal transformations in 3 dimensions (rotations and reflections) constitute a
subgroup,

dμν =
(

1 0
0 dik

)
(G.26)

for i, k = 1,2,3 and

3∑
m=1

dimd
j
m = δij . (G.27)

Further discrete transformations of the Lorentz-group are time-reflections

x ′i = xi; x ′0 = −x0; i = 1, 2, 3, (G.28)

and spatial reflections

x ′0 = x0, x ′i = −xi; i = 1, 2, 3. (G.29)

G.1 Lorentz-Goup: Scalars, Vectors, Tensors

A physical quantity � is denoted as Lorentz-scalar if it is invariant under Lorentz
transformations,

� → � ′ = �. (G.30)

As an example we quote the electric charge e or the mass squaredm2.
A Lorentz-vector or four-vector Aμ transforms like the components of the

space-time four-vector,

Aμ→ A′μ =
∑
ν

�μνA
ν. (G.31)

The covariant components then transform as

A′μ =
∑
ν

gμνA
′ν =

∑
ν,ρ

gμν�
ν
ρA
ρ

=
∑
ν,ρ,σ

gμν�
ν
ρg
ρσAσ =

∑
σ

(g�g)μ
σAσ (G.32)

=
∑
σ

(�−1)σ μAσ ,
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where in the last step Eq. (G.12) has been used. Examples are the space-time four-
vector xμ, the energy-momentum four-vector qμ, etc.

A Lorentz-tensor (of rank 2) is defined by the transformation properties of its
contra-variant components as

T ′μν =
∑
ρ,σ

�μρ�
ν
σT

ρσ . (G.33)

An example is the energy-momentum tensor. Extensions to tensors of higher rank
follow the same transformation law (with multiple�’s).

By contraction with the metric tensor gμν single (or more) upper components
can be converted to lower components, e.g.

Tμ
ν =

∑
ρ

gμρT
ρν, T μν =

∑
ρ,σ

gμρgνσ Tρσ . (G.34)

A lower index has to be treated as in case of a covariant vector, e.g. for the tensor of
rank 2,

T ′μ
ν =

∑
ρ,σ

(�−1)ρμ�
ν
σTρ

σ . (G.35)

Due to the linearity of the Lorentz transformation products of Lorentz-tensors (of
any rank) are again Lorentz-tensors, e.g.

Cμ
ν
ρ = AμT νρ (G.36)

is a tensor of rank 3 if Aμ is a four-vector and T νρ a Lorentz-tensor of rank 2.

The rank of a Lorentz-tensor n can be reduced to the rank n − 2 by setting two
indices equal and summing over this index. Accordingly the contraction of a tensor
of rank 2 gives a Lorentz-scalar,

� =
∑
μ

Tμ
μ, (G.37)

since

� ′ =
∑
μ

T ′μ
μ =

∑
μ,ν,ρ

(�−1)νμ�
μ
ρTν

ρ =
∑
ν,ρ

δνρTν
ρ =

∑
ν

Tν
ν = � . (G.38)
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Further Examples
1. The partial derivatives of a Lorentz-scalar � with respect to xμ gives the

covariant components of a four-vector since

∂ ′μ� ′ =:
∂� ′

∂x ′μ
=
∑
ν

∂�

∂xν

∂xν

∂x ′μ
=
∑
ν

(�−1)νμ
∂�

∂xν
(G.39)

employing the inverse of (G.7),

xμ =
∑
ν

(�−1)μνx
′ν. (G.40)

The index of this four-gradient thus has to be treated as a (lower) covariant
index,

∂μψ = ∂ψ

∂xμ
. (G.41)

2. The four-divergence of a Lorentz-vector is a Lorentz-scalar since (due to (G.32))

∑
ν

∂ ′νA′ν =
∑
μ,ν,ρ

(�−1)μν�
ν
ρ∂μA

ρ =
∑
μ,ρ

δμρ ∂μA
ρ =

∑
μ

∂μA
μ . (G.42)

3. Choosing the covariant components of a four-vector as

Aμ = ∂μ� = ∂�

∂xμ
, (G.43)

we get from (G.4) and (G.42)

∑
μ,ν

gμν∂μAν =
∑
μ,ν

gμν∂μ∂ν� =
∑
μ,ν

gμν∂ ′μ∂ ′ν� ′. (G.44)

The D’Alembert-operator,

∑
ν

∂ν∂
ν =

∑
μ,ν

gμν∂μ∂ν = 1

c2

∂2

∂t2
−∇2, ∇2 = � = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ,

(G.45)

thus is invariant under Lorentz transformations.
For a four-vector with covariant componentsAμ the covariant second deriva-

tives

∑
ν,σ

gνσ
∂2

∂xν∂xσ
Aμ =

∑
ν,σ

gνσ ∂ν∂σAμ =
∑
ν

∂ν∂
νAμ (G.46)
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transform like the covariant components of a four-vector. This is a central issue
in electrodynamics.

4. The scalar product of two four-vectors is a Lorentz-scalar:

∑
μ

A′μB ′μ =
∑
μ

∑
σ,ρ

�μρA
ρ(�−1)σ μBσ =

∑
ρ,σ

Aρδσρ Bσ =
∑
ρ

AρBρ.

(G.47)

G.2 Dirac Equation and Dirac-Clifford Algebra

The field equations for a free (spin 1/2 h̄) Dirac particle are given by

(
−i
∑
μ

γ μ∂μ +M
)
ψ(x) = 0, i

∑
μ

∂μψ̄(x)γ
μ + ψ̄(x)M = 0,

(G.48)

where the spinor ψ(x) is a four-component vector function of the space-time
variable x = (ct, r) andM denotes the bare mass of the fermion. The Pauli-adjoint
spinor is given by

ψ̄(x) = ψ†(x)γ 0 ≡ (ψ∗1 (x), ψ∗2 (x), −ψ∗3 (x), −ψ∗4 (x)). (G.49)

The 4×4 γ -matrices follow the anti-commutation relations

{γ μ, γ ν} = 2 gμν · 14 (μ, ν = 0, 1, 2, 3) (G.50)

with the Lorentz-invariant pseudo-metric gμν = gμν . These matrices, furthermore,
follow

(γ μ)† = γ 0γ μγ 0, (G.51)

and have the standard representation

γ k =
(

0 σk

−σk 0

)
k = 1, 2, 3 (G.52)

γ 0 =
(

12 0
0 −12

)
(G.53)

with the 2× 2 Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
(G.54)



G Lorentz Transformations, γ -Matrices, and Dirac-Algebra 217

and the 2× 2 unit matrix

12 =
(

1 0
0 1

)
. (G.55)

The four-current is given by

jμ(x) = ψ̄(x)γ μψ(x) (G.56)

(with μ = 0, 1, 2, 3) and follows the continuity equation

3∑
μ=0

∂μj
μ(x) =

(
∂

x0 j
0(x)+

3∑
k=1

∂

xk
jk(x)

)
= 0 (G.57)

thus expressing a vanishing four-divergence. The latter implies that the quantity

NF =
∫
d3r j0(x) (G.58)

is constant in time and describes the total net-fermion number.
Now starting with the 4 γ -matrices one can construct (by multiplication and

linear combination) a complete system of 4 × 4 matrices which provide a “basis”
in the space of complex 4 × 4 matrices. Since a 4 × 4 matrix has 16 elements one
needs also 16 “basis” elements. The standard choice for the basis matrices 
i is:

14 : 4× 4 unit matrix (G.59)

γ μ (μ = 0, 1, 2, 3) : 4 matrices

σμν = i
2
[γ μ, γ ν] : 6 matrices (antisymmetric)

γ μγ 5 (μ = 0, . . . , 3) : 4 matrices

γ 5 : 1 matrix

with the “chirality” matrix γ 5:

γ 5 = γ5 = iγ 0γ 1γ 2γ 3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (G.60)
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This matrix can also be written as

γ 5 = i

4!εμνρσ γ
μγ νγ ργ σ (G.61)

with the antisymmetric unit tensor of rank 4

εμνρσ =

⎧⎪⎪⎨
⎪⎪⎩

1 if (μ, ν, ρ, σ ) is an even permutation of (0, 1, 2, 3)

−1 if (μ, ν, ρ, σ ) is an odd permutation of (0, 1, 2, 3)

0 else.

It is easy to show that γ 5 has the properties

(γ 5)2 = 14, (γ 5)† = γ 5, {γ μ, γ 5} = 0 μ = 0, . . . , 3.
(G.62)

The elements of σμν �= 0 are the spatial nondiagonal components (μ, ν) = (k, l)
with k �= l and (μ, ν) = (0, k). They can be contracted to three-vectors

�m = 1

2

3∑
k,l=1

εmklσkl = i
2

3∑
k,l=1

εmklγkγl (m = 1, . . . , 3)

(G.63)

and

σ 0k = iγ 0γ k = iαk (k = 1, . . . , 3), (G.64)

with

εmkl = εmkl0 (G.65)

denoting the ε-tensor in three dimensions. �m has the properties of spin-matrices,
i.e.

[
1

2
�m,

1

2
�n
]
= i εmnp

(
1

2
�p
)

and
3∑
m=1

(
1

2
�m
)2

= 1

2

(
1

2
+ 1

)
· 14.

(G.66)

This is easy to show within the standard representation

�m =
(
σm 0
0 σm

)
(m = 1, 2, 3) (G.67)
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with the Pauli matrices σm. Furthermore,

γ kγ 5 =
(
σk 0
0 −σk

)
and γ 0γ 5 =

(
02 12

−12 02

)
. (G.68)

The hermicity properties are given by (G.51), (G.62) and read

(σμν)† = γ 0σμνγ 0, (γ μγ 5)† = γ 0(γ μγ 5)γ 0. (G.69)

The 16 matrices


1 = 14, 
2 = γ 0, . . . , 
16 = γ 5 (G.70)

are traceless (except for 
1) and define an orthonormal basis for 4×4 matrices with
the scalar product

(
A, 
B) = 1

4
T r(


†
A
B), (G.71)

1

4
T r 
A = δA,1, 1

4
T r (


†
A
B) = δA,B (A,B = 1, . . . , 16).

(G.72)

These matrices thus are linear independent and an arbitrary 4× 4 matrixM can be
written as a linear combination of the system (G.70):

M =
16∑
A=1

CMA 
A with CMA =
1

4
T r(


†
AM). (G.73)

Since products (or multiple products) of 
-matrices again are a 4 × 4 matrix the
product can also be written as a linear combination of 
-matrices. This leads to the
following ‘multiplication table’:

γ μ γ ν = gμν · 14 − i σμν (G.74)

γ λ σμν = i (gλμ γ ν − gλν γ μ − ελμνη (γ η γ 5))

γ μ (γ ν γ 5) = gμν γ 5 − 1

2
ε
μν
κλ σ

κλ

(γ λ γ 5) σμν = i [gλμ (γ ν γ 5)− gλν (γ μ γ 5)] − ελμνη γ ν

σ κλ σμν = (gκμ gλν − gκν gλμ) · 14 − i εκλμν γ 5

−i [gκμ σλν + gλν σ κμ − gκν σλμ − gλμ σκν]
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σμν γ 5 = − i
2
ε
μν
κλ σ

κλ(= γ 5 σμν)

(γ μ γ 5) (γ ν γ 5) = −gμν · 14 + iσμν

γ 5 (γ μ γ 5) = −γ μ.

The system of matrices (G.70) with the multiplication laws (G.74) is denoted as
Dirac-Clifford algebra.

An application of (G.74) are transition matrix elements (squared) |M|2 where
traces over products of γ -matrices have to be performed. Further examples are:

1

4
T r(γ μγ ν) = gμν (G.75)

1

4
T r(γ μ1γ μ2 . . . γ μn) = 0 n odd

1

4
T r(γ μγ νγ ργ σ ) = gμνgρσ + gμσ gνρ − gμρgνσ

1

4
T r(γ μγ νγ 5) = 0

1

4
T r(γ μγ νγ ργ σ γ 5) = i εμνρσ .

Conventionally such products—by contraction with arbitrary four-vectors
aμ, bν, . . .—are written in shorthand notation as:

∑
μ

aμγ
μ = a/ , (G.76)

i.e.

T r(a/ b/ ) = 4 a · b, (G.77)

etc. In this context we also recall the identities:

∑
μ

γμ a/ γ
μ = −2a/ (G.78)

∑
μ

γμ a/ b/ γ
μ = 4 a · b · 14

∑
μ

γμ a/ b/ c/ γ
μ = −2 c/ b/ a/ .
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G.3 Solutions of the Free Dirac Equation

We note in passing that the solution of the Dirac equation (G.48) implies that
each component of the Dirac spinor ψj (j = (1, 2, 3, 4)) fulfills the Klein-Gordon
equation:

(−∇2 +M2)ψj (x) = − ∂
2

∂t2
ψj(x) (G.79)

for a fermion with massM and thus has the dispersion relation

p2
0 = p2 +M2 (G.80)

as appropriate for a stable free particle in vacuum. Accordingly, the free Dirac
equation has the plane-wave solution

ψ(x) = ψ(0) exp(±ip · x) . (G.81)

In order to find an appropriate basis for the spinor ψ(0) we consider separately
solutions for positive and negative energy:

ψ+(x) = u(p) exp{−i(Et − p · x)}, ψ−(x) = v(p) exp{+i(Et − p · x)}
(G.82)

The Dirac equation (G.48) then gives:

(
−
∑
μ

pμγ
μ +M · 14

)
u(p) = (pμγ μ +M · 14)v(p) = 0. (G.83)

To specify the spinors u(p) and v(p)we first consider a particle at rest, i.e. for p = 0.
Eq. (G.83) then reads

γ 0u(0) = u(0), γ 0v(0) = −v(0). (G.84)

Now we may choose for u(0) and v(0) two orthonormal eigenvectors to γ 0 with
eigenvalues+1 and −1, which we will denote by ur(0), vr(0), r = ±, respectively.
Since the matrices (G.63) commute with γ 0 the spinors ur(0) and vr(0) may
simultaneously be eigenspinors of� ·a with eigenvalues±1, where a is an arbitrary
unit vector, since

(� · a)2 = (a · a) · 14 = 14. (G.85)
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The standard choice is a = (0, 0, 1) which gives

�3us(0) = s us(0), �3vs(0) = s vs(0). (G.86)

These 4 basis spinors are normalized according to

ūr (0)us(0) = δrs, −v̄r (0)vs(0) = δrs. (G.87)

It follows that

ūr (0)vs(0) = v̄r (0)us(0) = 0, (G.88)

since u and v are eigen spinors for different eigenvalues of γ 0. The completeness
relation then can be written as

∑
s=±
[us(0)ūs(0)− vs(0)v̄s (0)] = 14 (G.89)

and the expansion of γ 0 in terms of eigenspinors reads

∑
s=±
[us(0)ūs(0)+ vs(0)v̄s(0)] = γ 0. (G.90)

As a consequence the matrices

∑
s

us(0)ūs (0) = 1

2
(14 + γ 0) ≡ �+(0), −

∑
s

vs(0)v̄s (0) = 1

2
(14 − γ 0) ≡ �−(0),

(G.91)

with

�r(0)�s(0) = δrs�r(0) r, s = ± (G.92)

have the properties of projection operators on the solutions of positive and negative
energy±M for p = 0.

In standard representation we get:

ur(0) =
(
χr

0

)
, vr =

(
0
χr

)
with χ+ =

(
1
0

)
, χ− =

(
0
1

)
(G.93)
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and (in terms of 4× 4 matrices)

�+ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , �− =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (G.94)

In order to obtain the result for p �= 0 we employ a Lorentz transformation with the
velocity

v = p
Ep

(G.95)

to achieve

� : (M, 0, 0, 0)→
(√
p2 +M2,p

)
. (G.96)

With pe = p/|p| and cosh(b) = Ep/M , we have alternatively

cosh

(
b

2

)
=
√

1

2
(cosh(b)+ 1) = Np (Ep +M), (G.97)

sinh

(
b

2

)
=
√

1

2
(cosh(b)− 1) = Np |p|,

with

Np = 1√
2M(Ep +M)

. (G.98)

Furthermore, we use

Sp = Np (M · 14 +
∑
μ

pμγ
μγ 0)p0=Ep . (G.99)

This leads to the following spinors for Dirac particles with momentum p

ur(p) = Np (M · 14 +
∑
μ

pμγ
μ) ur (0), vr (p) = Np (M · 14 −

∑
μ

pμγ
μ) vr (0),

(G.100)
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which are a solution of Eq. (G.83) since

(M +
∑
μ

pμγ
μ)(M −

∑
μ

pμγ
μ) = M2 −

∑
μ,ν

pμpν
1

2
{γ μ, γ ν} = 0. (G.101)

The normalization is

ūr (p)us(p) = −v̄r (p)vs(p) = δrs, ūr (p)vs(p) = v̄r (p)us(p) = 0.
(G.102)

In order to evaluate the projectors on spinors with positive and negative energy
at finite p,

�+(p) = Sp�+(0)S−1
p =

∑
s

us(p)ūs(p),

�−(p) = Sp�−(0)S−1
p = −

∑
s

vs(p)v̄s (p) (G.103)

we use

Spγ
0S−1
p = N2

p(M · 14 +
∑
μ

pμγ
μγ 0)γ 0(M · 14 +

∑
μ

γ 0pμγ
μ) (G.104)

= N2
p

[
M2γ 0 + 2M

∑
μ

pμγ
μ +

∑
μ,ν

pμγ
μpν(2g0ν − γ νγ 0)

]

= N2
p

[
2M
∑
μ

pμγ
μ + 2

∑
μ

pμγ
μp0 + (M2 −

∑
μ,ν

pμγ
μpνγ

ν)γ 0

]

= 1

M

∑
μ

pμγ
μ

and get

�±(p) = 1

2M
(M · 14 ±

∑
μ

pμγ
μ)p0=Ep . (G.105)

The completeness relation (G.89) then reads

∑
s

[us(p)ūs(p)− vs(p)v̄s (p)] = 14. (G.106)
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In standard representation the 4 basis spinors are given by

us(p) = 1√
2M(Ep +M)

(
(Ep +M)χs
(�σ · p)χs

)
, vs(p) = 1√

2M(Ep +M)

(
(�σ · p)χs
(Ep +M)χs

)

(G.107)

or explicitly (p1 = px, p2 = py, p3 = pz)

u+(p) = 1√
2M(Ep +M)

⎛
⎜⎜⎜⎝
Ep +M

0
p3

p1 + ip2

⎞
⎟⎟⎟⎠ ; u−(p) =

1√
2M(Ep +M)

⎛
⎜⎜⎜⎝

0
Ep +M
p1 − ip2

−p3

⎞
⎟⎟⎟⎠ ;

(G.108)

v+(p) = 1√
2M(Ep +M)

⎛
⎜⎜⎜⎝

p3

p1 + ip2

Ep +M
0

⎞
⎟⎟⎟⎠ ; v−(p) =

1√
2M(Ep +M)

⎛
⎜⎜⎜⎝
p1 − ip2

−p3

0
Ep +M

⎞
⎟⎟⎟⎠ .

(G.109)

It is straight forward to evaluate the matrix elements

ūs(p)γ μus(p) = p
μ

M
= v̄s (p)γ μvs(p), (G.110)

such that the Dirac equation (multiplied byM) reads

Mūs(p)

(
−
∑
μ

pμγ
μ +M · 14

)
us(p) = −

∑
μ

pμp
μ +M2 = 0, (G.111)

which is equivalent to the free dispersion relation p2
0 = p2 +M2.

In the standard representation of us the lower components become smaller by a
factor |p|/(2M) in the nonrelativistic limit |p|  M while the relations are opposite
for vs .

Furthermore, the relation between us and vs is given by

γ 5us(p) = vs(p), γ 5vs(p) = us(p); (G.112)

the chirality matrix γ 5 thus exchanges u- and v-spinors.
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G.4 Quantization of the Free Dirac Field

In this subsection we briefly recall the quantization of the free Dirac field. With the
abbreviations

ε+(p) = √p2 +M2, (G.113)

ε−(p) = −√p2 +M2 (G.114)

an arbitrary solution of the free Dirac equation can be expanded as:

�(x) =
∫
d3p

(2π)3
M

ω(p)
×

2∑
λ=1

[cλ(p)uλ(p) exp(−i(ε+(p)t − p · x)) (G.115)

+ d†
λ(p)vλ(p) exp(i(ε−(p)t − p · x))],

�̄(x) =
∫
d3p

(2π)3
M

ω(p)
×

2∑
λ=1

[c†
λ(p)ūλ(p) exp(+i(ε+(p)t − p · x)) (G.116)

+ dλ(p)v̄λ(p) exp(−i(ε−(p)t − p · x))],

with ω(p) = √
p2 +M2 = Ep as the positive defined on-shell single-particle

energy while the sum over λ denotes the summation over the two spin projections.
Here the expansion coefficients cλ, c

†
λ, dλ, d

†
λ—after quantization—are creation

and annihilation operators for particles and antiparticles, respectively, (with spin
projections λ) following the anti-commutator relations (λ ≡ r, s)

{cr(p), c†
s (p
′)} = {dr(p), d†

s (p
′)} = Ep

M
δrs δ

3(p− p′), (G.117)

while all other anti-commutators vanish:

{cr(p), cs(p′)} = {dr(p), ds(p′)} = {c†
r (p), c

†
s (p
′)} = {d†

r (p), d
†
s (p
′)} = 0

(G.118)

as well as the mixed anti-commutators between c, c†- and d, d†-operators. We recall
that the particle number operator for fermions with momentum p and spin projection
r is given by

Nr(p) = M

Ep
c†
r (p)cr(p) (G.119)

in the normalization of Bjorken and Drell.
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G.5 Transformation Properties of Dirac Spinors

We briefly recall the transformation properties of spinors with respect to Lorentz
transformations.2 In case of space-time transformations the components of a spinor
ψ(x) are not mixed since each component is transformed separately. For the four-
momentum we have

[Pμ,ψ(x)] = −i ∂μψ(x) (G.120)

and the unitary transformationU(a) in Hilbert space must follow

U−1(a)ψ(x + a)U(a) = ψ(x) (G.121)

for a transformation xμ→ x
′μ = xμ + aμ in Minkowski space with

U(a) = exp(iaμPμ) = (U−1(a))†. (G.122)

We recall that (G.120) are the equations of motion in the Heisenberg picture.
In case of homogenous Lorentz transformations x → x ′ = �x the

transformation in Hilbert space is more complicated. Here the requirement for
the transformation U(�)—according to the Ehrenfest theorem —must fulfill the
condition

〈�′|ψ(�x)|�′〉 = 〈�|U†(�)ψ(�x)U(�)|�〉
= S(�)〈�|ψ(x)|�〉 with |�′〉 = U(�)|�〉, (G.123)

where U(�) denotes the operator in Hilbert space induced by the transformation�
in Minkowski space. Since |�〉 is arbitrary, we get:

U†(�)ψ(�x)U(�) = S(�)ψ(x) or U(�)ψ(x)U†(�) = S−1(�)ψ(�x).

(G.124)

Since U(�) must be a unitary operator, we may write this operator as

U(�) = exp

(
i

2
αμνM

μν

)
, � = �(α) (G.125)

2 In this subsection we will use the Einstein convention throughout.
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with an antisymmetric (real) parameter matrix αμν3 and an antisymmetric (Hermi-
tian) operator matrixMμν . In case of infinitesimal transformations we have

S−1(�) ≈ 14 + i
4
αμνσ

μν (G.126)

and with (G.124) we obtain

ψ(x)+ i
2
αμν [Mμν,ψ(x)] =

(
14 + i

4
αμνσ

μν

)
ψ(xρ + αρδ xδ) (G.127)

=
(

14 + i
4
αμνσ

μν

)
(14 + αρδ xδ∂ρ)ψ(x)

=
(

14 + i
4
αμνσ

μν

)

×
[

14 + i
2
αρδ

(
1

i
xδ∂ρ − 1

i
xρ∂δ

)]
ψ(x),

which implies

[Mμν,ψ(x)] =
[

1

2
σμν + 1

i
(−xμ∂ν + xν∂μ)

]
ψ(x). (G.128)

This is different from the case of Klein-Gordon (Bose-) fields due to the extra term
1/2 σμν , which mixes the spinor components. In the special case of rotations we
obtain:

1

2
σkl = εklm

(
1

2
�m

)
, (G.129)

where the three-vector�m has the commutation relations of angular momentum 1/2
h̄. When considering a single-particle wavefunction in the rest frame with p = 0,
independent of x, we get in case of a rotation� = R = R( �ϕ)

〈0|ψ(x)U(R( �ϕ))|p = 0, s; c〉 = exp

(
− i

2
�ϕ ·�

)
〈0|ψ(x)|p = 0, s; c〉.

(G.130)

Accordingly the spin of a Dirac particle is 1/2h̄ since a rotation by the angle 2π
gives a (−)-sign.

3 Due to 6 independent parameters of the Lorentz transformation one needs an antisymmetric 4×4
parameter matrix αμν and operator matrixMμν .
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Discrete transformations leave the field equations

(−iγ μ∂μ +M · 14)ψ(x) = 0, i∂μψ̄(x)γ
μ + ψ̄(x)M · 14 = 0 (G.131)

and the anticommutator-relations for the field operators invariant, however, cannot
be expanded infinitesimally around 14.

1. Parity-transformationUp
In this case we have in analogy to Eq. (G.124)

Upψ(x)U
−1
p = ηpγ 0ψ(t,−x), (G.132)

Upψ̄(x)U
−1
p = η∗pψ̄(t,−x)γ 0

with |ηp| = 1. Using

γ 0us(p) = us(−p), γ 0vs(p) = −vs(−p) (G.133)

this gives for the particle operators

Upc
†
s (p)U

−1
p = η∗pc†

s (−p), (G.134)

Upd
†
s (p)U

−1
p = −ηpd†

s (−p).

Thus Fermi particles and antiparticles have opposite internal parity! By conven-
tion we set ηp = +1 for protons. Then (from electromagnetic processes) one
finds ηp = +1 for the electron e−, muon μ−, neutron and all other baryons
ηp = +1, while e+, μ+ and all antibaryons have ηp = −1.

Independent of convention bound states of a fermion and antifermion—in a
state with even angular momentum (l = 0, 2, 4, . . .)—have ηp = −1.

2. Time-reflection τ
This transformation is anti-unitary and can be written as

τ = UT K (G.135)

with a unitary UT while K denotes the operator of complex conjugation. The
action is

τ ψα(x)τ
−1 =

4∑
β=1

Tαβ ψβ(−t, x) (G.136)



230 G Lorentz Transformations, γ -Matrices, and Dirac-Algebra

for α = 1, . . . , 4, with a 4× 4 matrix T , which must fulfill (being form invariant
and unitary)

T −1 = T †, T γ μT −1 = (γ μ)∗ . (G.137)

In standard representation T reads as:

T = iγ 1γ 3 = −�2 = −
(
σ 2 0
0 σ 2

)
(= −T ∗), (G.138)

and its action on the particle operators is:

T us(p) = u∗−s(−p), T vs(p) = v∗−s (−p). (G.139)

From Eq. (G.136) we obtain the transformation properties for c†
s , d

†
s

τ c†
s (p)τ

−1 = −c†
−s(−p), (G.140)

τ d†
s (p)τ

−1 = −d†
−s(−p). (G.141)

3. Charge conjugation Uc
This unitary operator changes the sign of the charge current and acts as

follows:

Ucψ(x)U
−1
c = ηcCψ̄T (x), Ucψ̄(x)U

−1
c = −η∗cψT (x)C−1,

(G.142)

with |ηc| = 1 and a 4× 4 Matrix C with the properties

C−1 = C†, Cγ μC−1 = −(γ μ)T , (G.143)

where T here denotes “transposition.” In standard representation C is given by

C = iγ 2γ 0 = −i �α2 = −i
(

0 σ 2

σ 2 0

)
(= −C−1 = −C† = −CT = C∗). (G.144)

The action on the basis spinors of Cγ 0 = i γ 2 is:

(Cγ 0)u∗s (p) = vs(p), (Cγ 0)v∗s (p) = us(p) (G.145)

and the action on the particle operators follows as:

Ucc
†
s (p)U

−1
c = η∗c d†

s (p), Ucd
†
s (p)U

−1
c = ηcc†

s (p). (G.146)
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Consequently a particle-antiparticle system (with even orbital angular momen-
tum l = 0, 2, 4, . . .) has the charge conjugation parity −1.

G.6 Green’s Function of the Free Dirac Field

The two-point function of the free Dirac field is defined by the vacuum expectation
value

G0(x, y) = −i〈0|T̂ [ψ(x)ψ̄(y)]|0〉, (G.147)

which is a 4× 4 matrix. The prescription for time-ordering T̂ places all annihilation
operators to the right, however, with a relative (−)-sign for each permutation. Thus
one gets an additional prefactor (−)p, where p denotes the number of permutations
needed to achieve a time-ordered sequence of Fermion-operators, e.g.

T̂ [ψ(x)ψ̄(y)] = �(x0 − y0)ψ(x)ψ̄(y)−�(y0 − x0)ψ̄(y)ψ(x). (G.148)

We then obtain

G0(x, y)=−i
[
�(x0−y0)(−i S(+)(x−y;M)) −�(y0−x0)(−i S(−)(x−y,M)

]
(G.149)

=(M · 14 + iγ μ∂μ)
[
�(x0−y0)�(+)(x−y) −�(y0−x0)�(−)(y−x)

]

=(M · 14 + iγ μ∂μ)�F (x−y)

= SF (x−y;M)

with the Schwinger�F -function

�F (x,M) = − i

(2π)3

∫
d4q ε(q)δ(q2 −M2) exp(−iq · x). (G.150)

In (G.150) the prefactor ε(q) is given by

ε(q) = �(q0)−�(−q0) = q0

|q0| (G.151)

and gives a positive sign for positive frequencies and a negative sign for negative
frequencies. Note that the combination ε(q)δ(q2−M2) is invariant under homoge-
nous Lorentz transformations that do not mix four-vectors in the forward light cone
with those from the backward light cone. Thus�F is Lorentz-invariant with respect
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to transformations with det(�) = 1:

�F (x
′) = �F (�x) = − i

(2π)3

∫
d4q ε(q)δ(q2 −M2) exp(−i(�−1q) · x)

(G.152)

= − i

(2π)3

∫
d4q ′ ε(�q ′) δ((�q ′)2 −M2) exp(−iq ′ · x)

∣∣∣∣ ∂(q
0..q3)

∂(q ′0..q ′3)

∣∣∣∣
with q ′ = �−1q . The functional-determinant is ≡ 1 and due to the invariance of the
εδ-factor we get

�F (�x) = �F (x) if det(�) = 1. (G.153)

On the other hand �F(x) changes sign for discrete transformations x → −x since
ε(−q) = −ε(q), i.e.

�F (−x) = −�F(x). (G.154)

For spacelike x ((x0)2 < x2 or x2 < 0) Eqs. ((G.153) and (G.154)) imply that �F
vanishes,

�F (x) = 0 if x2 < 0. (G.155)

This property of the �-function implies “micro-causality” which also holds for
SF (x − y) according to (G.149).

In (G.149) the operators S(+), S(−) denote the fraction with only positive (or
negative) frequencies, i.e.

S(±)(x;M) = −(M · 14 + iγ μ∂μ) �(±)(x,M) (G.156)

= i(2π)−3
∫
d3p

M

Ep
[±�±(p) exp(−± ip · x)]p0=Ep

= i(2π)−3
∫
d4p δ(p2 −M2) [±�(±p0) (M · 14 + γ μpμ)]

× exp(−ip · x)

with

S(+)(x;M)+ S(−)(x;M) = S(x;M) (G.157)
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with the help of the projectors �±. The causal (Feynman) propagator (G.149) for
Dirac fields then can be written as,

SF (x;M) = (M · 14 + i γ μ∂μ) �F (x;M), (G.158)

and has the Fourier representation

SF (x;M) = (2π)−4
∫
d4p SF (p;M) exp(−ip · x) (G.159)

with

SF (p;M) = M · 14 + pμγ μ
p2 −M2 + iη . (G.160)

Alternatively one can write (for η→ 0+)

SF (p) = 1

pμγ μ −M · 14
(G.161)

using

(M · 14 + pμγ μ) (M · 14 − pμγ μ) = M2 − p2. (G.162)

Since

(−iγ μ∂μ +M · 14) (iγ
μ∂μ +M · 14) = (∂μ∂μ +M2) · 14, (G.163)

SF (x) is the Green’s function of the Dirac-problem in the sense of

(−iγ μ∂μ +M · 14)SF (x − x ′;M) = −δ4(x − x ′) · 14. (G.164)



HDensity-Dependent Relativistic Mean-Field
Theory

The density-dependent relativistic mean-field theory1 is an extension of the rela-
tivistic mean-field theory proposed first by Serot and Walecka2 and has been widely
employed in the literature on different levels of sophistication to describe finite
nuclei and nuclear matter on the basis of a covariant Lagrangian density L and
is briefly repeated here for completeness. A reminder of relativistic field theory for
Dirac particles is given in Appendix G along with the notation used here. If the
reader is familiar with these aspects Appendix G can be skipped. Furthermore, in
this section we will use the Einstein convention.

The Lagrangian of the isospin symmetric Quantum-Hadro-Dynamics (QHD)
consists of the free Dirac Lagrangian for the nucleons, the Lagrangian for the
scalar σ -field and the vector ω-field with self-interactions and an interaction part
of Yukawa type (in the stationary limit) for the nucleon-meson interactions. The
couplings are taken as a function of a Lorentz-scalar ρ̂0, that depends on the nucleon
fields �̄ and �:

L = LB + LM + LI , (H.1)

LB = �̄
(
iγμ∂

μ −M)�, (H.2)

LM = 1

2
∂μσ∂

μσ − U(σ)− 1

4
FμνF

μν +O(ωμωμ), (H.3)

LI = 
σ (ρ̂0)�̄σ� − 
ω(ρ̂0)�̄γ
μωμ�. (H.4)

1 C. Fuchs, H. Lenske, and H. H. Wolter, Phys. Rev. C 52 (1995) 3043.
2 J. D. Walecka, Ann. Phys. 83 (1974) 491; B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16
(1986) 1.
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The mesonic energiesU(σ) andO(ωμωμ) are not specified here (see below). When
discarding self-interactions the latter only consist of the mass terms

U(σ) = m
2
σ

2
σ 2, O(ωμωμ) = m

2
ω

2
ωμωμ (H.5)

withmσ andmω denoting the “mass” of the σ andω field, respectively. Furthermore,
the antisymmetric tensor Fμν is given by

Fμν = ∂μων − ∂νωμ (H.6)

in close analogy to electrodynamics.
If the Lorentz-scalar is taken as ρ̂0 = �̄� in (H.1) the couplings will depend on

the scalar density (SDD) and if it is taken as ρ̂0 = �̄uμγ μ� they will depend on
the baryon density (VDD).

H.1 Equations of Motion

The equations of motion—derived from the Euler-Lagrange equations—read,3

∂μ∂
μσ + ∂U

∂σ
= 
σ (ρ̂0)�̄�, (H.7)

∂νF
μν + ∂O

∂ωμ
= 
ω(ρ̂0)�̄γ

μ�, (H.8)

for the meson fields and

(iγμ∂
μ −M)� + 
σ (ρ̂0)σ� − 
ω(ρ̂0)γμω

μ �

+∂
σ (ρ̂0)

∂ρ̂0

∂ρ̂0

∂�̄
�̄σ� − ∂
ω(ρ̂0)

∂ρ̂0

∂ρ̂0

∂�̄
�̄γ νων � = 0 (H.9)

for the nucleon field. One can rearrange the equation of motion for the nucleons and
write it in the form of the free Dirac equation4 as

0 =
(
γμ

(
i∂μ − �̂μ

)
−
(
M − �̂s

))
� (H.10)

=
(
γμ

(
i∂μ − �̂μ(0) − �̂μ(r)

)
−
(
M − �̂s(0) − �̂s(r)

))
�.

3 T. Steinert and W. Cassing, Phys. Rev. C 98 (2018) 014908.
4 A reminder of Dirac spinors and the Dirac-algebra is given in Appendix G.
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In (H.10) �̂s is the scalar selfenergy and modifies the mass while �̂μ is the vector
selfenergy that modifies the four-momentum of the nucleons. The selfenergies are
divided into two parts �̂ = �̂(0) + �̂(r). The first one is the regular selfenergy
�̂(0), the second is denoted as rearrangement selfenergy �̂(r). The rearrangement
selfenergies are the result of the density dependence of the couplings and contain
terms that are included in the equations of motion but not in the Lagrangian! They
arise from the differentiation of the couplings with respect to the �̄-field.

The nature of the rearrangement selfenergies depends on the choice of the density
ρ̂0. In case of SDD couplings we get

∂ρ̂0

∂�̄
= �, (H.11)

and for VDD couplings

∂ρ̂0

∂�̄
= uμγ μ�. (H.12)

The first choice leads to a vanishing vector rearrangement selfenergy and the second
to a vanishing scalar rearrangement selfenergy. We will specify ρ̂0 later and keep
both the vector and the scalar rearrangement selfenergies in the following.

The equations of motion (H.7), (H.8) and (H.10) are too complicated to be solved
on the many-body level.5 We therefore introduce the mean-field approximation to
simplify the equations and to allow for actual calculations. In this approximation
the quantum fluctuations in the mesonic equations of motion are neglected which is
justified if the source terms become large. The right side of Eq. (H.7) and (H.8) are
then replaced by their normal ordered expectation values. This leads to


σ (ρ̂0)�̄� → 
σ (ρ0)〈: �̄� :〉, (H.13)


ω(ρ̂0)�̄γ
μ� → 
ω(ρ0)〈: �̄γ μ� :〉, (H.14)

where 〈: �̄� :〉 = ρs is the scalar density and 〈: �̄γ μ� :〉 = jμ is the baryon
current with 〈: �̄γ 0� :〉 = j0 = ρB as the baryon density. The couplings depend
now on the normal ordered expectation value of ρ̂0.

To further simplify the equations we introduce the local-density approximation
(LDA). In the case that the density of the system is locally approximately constant
one can neglect the spatial derivatives of the meson fields. If one is only interested
in the thermodynamics of homogenous systems, this approximation is definitively
justified. Furthermore, we can additionally neglect the time derivatives of the
meson fields and the spatial components of the baryon current 〈: �̄γ i� :〉 if one
investigates a stationary and homogenous system in equilibrium. The equations of

5 Since the Lagrangian has to be considered as an effective one it is not clear if higher order terms
are physically meaningful.
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motion (H.7), (H.8), and (H.10) simplify drastically within these approximations.
The meson fields drop out as independent degrees of freedom since they are
completely defined by the scalar density and the baryon density,

∂U

∂σ
= 
σ (ρ0)ρs, (H.15)

∂O

∂w0
= 
ω(ρ0)ρB. (H.16)

The spatial part of the ω-field vanishes ( �ω = 0) and the field is defined by its
zeroth component denoted by ω further on. The spatial part of the normal vector
selfenergy �μ(0) also vanishes in this approximation because it is proportional to
the �ω-field and if we choose the nuclear rest frame with uμ = (1, 0, 0, 0) also the
spatial vector rearrangement selfenergies vanish due to Eq. (H.12). The complete
vector selfenergy then is given by its zeroth component.

Within these approximations the selfenergies of the nucleons no longer depend
on any field operators �̂ → � and are now simple complex numbers. This allows us
to use the known free Dirac spinors in the further evaluation. We write the equation
of motion for the nucleons (H.10) as,

(
γ μ μ −M∗

)
�(x) = 0, (H.17)

with  0 = p∗0 = p0 − �0, � = �p and M∗ = M − �s . In momentum space the
equation reads

(
γ μp∗μ −M∗

)
u∗(p) = 0,

(
γ μp∗μ +M∗

)
v∗(p) = 0 (H.18)

with u∗(p) as the effective spinor for particles and v∗(p) as the effective spinor for
antiparticles. This leads to the mass-shell condition

p∗μp∗μ −M∗2 = 0 ⇒ p∗0 = ±
√

p2 +M∗2. (H.19)

The effective spinors are obtained by replacing the mass and the energy with their
effective values in the free Dirac spinors u(p) and v(p) and fulfill the relations,

ū∗r u∗s = δrs = −v̄∗r v∗s , ū∗s γ μu∗s = v̄∗s γ μv∗s =
 μ

M∗
. (H.20)

With the abbreviations

ε+(p) =  0+ +�0 = √p2 +M∗2 + �0, (H.21)

ε−(p) =  0− +�0 = −√p2 +M∗2 + �0 (H.22)
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the spinor � and the Pauli-adjoint spinor �̄ can be expanded as

�(x) =
∫
d3p

(2π)3
M∗

E∗(p)
×

2∑
λ=1

[cλ(p)uλ(p) exp(−i(ε+(p)t − p · x)) (H.23)

+ d†
λ(p)vλ(p) exp(i(ε−(p)t − p · x))],

�̄(x) =
∫
d3p

(2π)3
M∗

E∗(p)
×

2∑
λ=1

[c†
λ(p)ūλ(p) exp(+i(ε+(p)t − p · x)) (H.24)

+ dλ(p)v̄λ(p) exp(−i(ε−(p)t − p · x))],

with E∗(p) = √
p2 +M∗2 as the positive defined single-particle energy. This

allows to calculate the baryon density and the scalar density in equilibrium as

ρB = 〈: �̄γ 0� :〉 = d
∫
d3p

(2π)3

(
f̃ ∗(p)− ¯̃f ∗(p)

)
, (H.25)

ρs = 〈: �̄� :〉 = d
∫
d3p

(2π)3
M∗

E∗(p)

(
f̃ ∗(p)+ ¯̃f ∗(p)

)
, (H.26)

with the degeneracy factor d = 4 for spin and isospin symmetric nuclear matter.

The functions f̃ and ¯̃
f are the equilibrium distribution functions for fermions,

respectively, antifermions

f̃ (p) = (exp
((
ε+ − μ) /T )+ 1

)−1 =
(

exp
((
E∗(p)+ �0 − μ

)
/T
)
+ 1
)−1

= (exp
((
E∗(p)− μ∗) /T )+ 1

)−1 = nF (T ,μ∗,M∗), (H.27)

¯̃
f (p) = (exp

((−ε− + μ) /T )+ 1
)−1 =

(
exp
((
E∗(p)−�0 + μ

)
/T
)
+ 1
)−1

= (exp
((
E∗(p)+ μ∗) /T )+ 1

)−1 = nF̄ (T , μ∗,M∗), (H.28)

and are related to the regular Fermi-distribution functions but with the effective
chemical potential μ∗ = μ−�0 and the energy E∗(p) = E∗p =

√
p2 +M∗2.

This allows to evaluate the equations for the meson fields, Eqs. (H.15) and (H.16),
giving two coupled selfconsistent equations that have to be solved simultaneously:

∂U

∂σ
= 
σ (ρ0) ρs(T , μ

∗,M∗), (H.29)

∂O

∂ω
= 
ω(ρ0) ρB(T ,μ

∗,M∗). (H.30)
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H.2 Thermodynamics and Thermodynamic Consistency

With these selfconsistent equations fixed we can evaluate the energy-momentum
tensor,

T μν = ∂L
∂
(
∂μ�

) ∂�
∂xν
− gμνL, (H.31)

where the energy density E and the pressure P of a system are given as normal
ordered expectation values from the diagonal elements of the tensor,

E = 〈: T 00 :〉, (H.32)

P = 〈: T ii :〉 = 1

3

3∑
i=1

〈: T ii :〉. (H.33)

For the following it is of advantage to write the selfenergies split into the normal and
the rearrangement part. This is due to the fact that the rearrangement selfenergies
appear in the equation of motion but not in the Lagrangian. The energy density
in mean-field approximation is then given by (including a factor of 2 for isospin
symmetric matter)

E = U(σ)−O(ω)+ 2〈: i�̄γ 0∂0� :〉
− 2〈: �̄

(
γμ

(
i∂μ − �μ(0)

)
−
(
M −�s(0)

))
� :〉

= U(σ)−O(ω)+ 2〈: i�̄γ 0∂0� :〉 − 2 〈: �̄ (γμ μ −M∗)� :〉︸ ︷︷ ︸
=0

− 2〈: �̄
(
γ0�

0(r) −�s(r)
)
� :〉

= U(σ)−O(ω)+ 2〈: i�̄γ 0∂0� :〉 − �0(r)ρB +�s(r)ρs, (H.34)

where the equation of motion (H.10) has been employed to simplify the expression.
With the solutions for � (H.23) and �̄ (H.24) the first term gives:

E = U(σ)−O(ω)− �0(r)ρB +�s(r)ρs (H.35)

+ 2
2∑
λ=1

∫
d3p

(2π)3
M∗

E∗p

(
ε+(p)〈: c†

λ(p)cλ(p) :〉 − ε−(p)〈: dλ(p)d†
λ(p) :〉

)

= U(σ)−O(ω)− �0(r)ρB +�s(r)ρs

+ d
∫
d3p

(2π)3

(
(E∗p +�0) nF (T ,μ

∗,M∗)− (−E∗p +�0) nF̄ (T , μ
∗,M∗)

)
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= U(σ)−O(ω)− �0(r)ρB +�s(r)ρs +�0(0)ρB +�0(r)ρB

+ d
∫
d3p

(2π)3
E∗p
(
nF (T ,μ

∗,M∗)+ nF̄ (T , μ∗,M∗)
)

= U(σ)−O(ω)+ �s(r)ρs + �0(0)ρB

+ d
∫
d3p

(2π)3
E∗p
(
nF (T ,μ

∗,M∗)+ nF̄ (T , μ∗,M∗)
)

= U(σ)−O(ω)+ �s(r)ρs + �0(0)ρB + E0(T , μ
∗,M∗)

with d = 4 for the sum over spin and isospin. Note that the vector rearrangement
term has been cancelled and gives no direct contribution to the energy density.
In (H.35) E0 is the energy density for a non-interacting particle evaluated at the
effective chemical potential μ∗ with the effective massM∗.

Using the equation of motion for the nucleon field (H.10), the pressure in mean-
field approximation reads

P = −U(σ)+O(ω)+�0(r)ρB −�s(r)ρs + 2

3

3∑
i=1

〈: i�̄γ i∂i� :〉. (H.36)

The further evaluation is analogue to the energy density and gives

P = −U(σ)+O(ω)+�0(r)ρB −�s(r)ρs (H.37)

+ 2

3

2∑
λ=1

3∑
i=1

∫
d3p

(2π)3

(
M∗

E∗p

)2 (
pi

M∗
〈: c†

λ(p)cλ(p) :〉pi

+ pi

M∗
〈: dλ(p)d†

λ(p) :〉pi
)

= −U(σ)+O(ω)+�0(r)ρB −�s(r)ρs

+ d
3

∫
d3p

(2π)3
p2

E∗p

(
nF (T ,μ

∗,M∗)+ nF̄ (T , μ∗,M∗)
)

= −U(σ)+O(ω)+�0(r)ρB −�s(r)ρs + P0(T , μ
∗,M∗).

In (H.37)P0 is the pressure for a non-interacting particle with the effective quantities
μ∗ andM∗. Contrary to the energy density (H.35) we get a direct contribution from
the vector rearrangement term in the pressure!
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One, furthermore, has to check if the model is thermodynamic consistent. In
nuclear matter at temperature T = 0 this is tested by comparing the thermodynamic
definition of the pressure to the mechanical definition via the energy-momentum
tensor,

ρ2
B

∂

∂ρB

(
E

ρB

)
= P = 1

3

3∑
i=1

〈: T ii :〉. (H.38)

This method is only sufficient in the canonical ensemble at T = 0 where the energy
density is proportional to the thermodynamic potential. In the grand-canonical
ensemble, where the thermodynamic potential is proportional to the pressure (� =
−P ), it is better to show that the thermodynamic definition of the energy density is
identical to its mechanical definition,

E = T s − P + μBρB != 〈: T 00 :〉 = E . (H.39)

Another important check concerns the differential form of the grand-canonical
potential. The potential/pressure derived above depends via the selfenergies on
the additional parameters σ , ω, ρs , and ρB , that also enter the differential form.
It is therefore necessary that the derivatives of the pressure with respect to these
parameters vanish to regain the known differential form of the thermodynamic
potential, i.e.

∂P

∂σ
= ∂P
∂ω
= ∂P
∂ρs
= ∂P

∂ρB
= 0. (H.40)

We assume further on that the conditions (H.40) are fulfilled to prove Eq. (H.39).
The entropy density is defined as the differential of the pressure with respect to the
temperature

s = ∂P
∂T

∣∣∣∣
σ,ω

+ ∂P
∂σ︸︷︷︸
=0

∂σ

∂T
+ ∂P
∂ω︸︷︷︸
=0

∂ω

∂T
+ ∂P
∂ρs︸︷︷︸
=0

∂ρs

∂T
+ ∂P
∂ρB︸︷︷︸
=0

∂ρB

∂T
= ∂P0

∂T
= s0(T ,μ∗,M∗)

(H.41)

and takes the form of the non-interacting entropy density with the effective
quantities μ∗ andM∗. The same holds for the particle density,

n = ∂P
∂μ

∣∣∣∣
σ,ω

+ ∂P
∂σ︸︷︷︸
=0

∂σ

∂μ
+ ∂P
∂ω︸︷︷︸
=0

∂ω

∂μ
+ ∂P
∂ρs︸︷︷︸
=0

∂ρs

∂μ
+ ∂P
∂ρB︸︷︷︸
=0

∂ρB

∂μ
= ∂P0

∂μ

= n0(T , μ
∗,M∗) = ρB, (H.42)



H Density-Dependent Relativistic Mean-Field Theory 243

which is identical to its definition in Eq. (H.25). The thermodynamical definition of
the energy density is then

E = T s0(T , μ∗,M∗)+ U(σ)−O(ω)− �0(r)ρB + �s(r)ρs
− P0(T , μ

∗,M∗)+ μ∗n0(T , μ
∗,M∗)+ (μ− μ∗)ρB (H.43)

= U(σ)−O(ω)−�0(r)ρB +�s(r)ρs +�0ρB + E0(T , μ
∗,M∗)

= U(σ)−O(ω)+�s(r)ρs +�0(0)ρB + E0(T , μ
∗,M∗)

and thus equal to the mechanical definition (H.32). This proves the thermodynamic
consistency of the theory. Naturally, this holds also in the canonical ensemble for
T = 0.

Furthermore, one has to specify the explicit form of the selfenergies. To cover
also the most general cases we assume that the scalar and the vector coupling depend
on different densities ρ̂σ and ρ̂ω, that we take as

ρ̂σ = α�̄� + β�̄uμγμ�, ρ̂ω = γ �̄� + δ�̄uμγμ�, (H.44)

and translate in mean-field approximation to

ρσ = αρs + βρB, ρω = γρs + δρB. (H.45)

The choice α = γ = 1 and β = δ = 0 leads to SDD couplings and the choice α =
γ = 0 and β = δ = 1 to VDD couplings. The special case of α = β = γ = δ = 0
is the standard relativistic mean-field model with constant couplings that has been
widely used in the literature and is employed in Sect. 3.1.

The normal selfenergies are fixed by the Lagrangian and read in mean-field
approximation:

�s(0) = 
σ (ρσ )σ, �μ(0) = 
ω(ρω)ωδμ0. (H.46)

The rearrangement selfenergies follow from the equation of motion of the nucleons
(H.9) and, using the densities from Eq. (H.44), are given by

�̂s(r) = α 
̂′σ �̄σ� − γ 
̂′ω�̄γ μωμ�, (H.47)

�̂μ(r) =
(
−β 
̂′σ �̄σ� + δ 
̂′ω�̄γ μωμ�

)
uμ. (H.48)

In mean-field approximation they translate to

�s(r) = α 
′σ σρs − γ 
′ωωρB, (H.49)

�0(r) = −β 
′σ σρs + δ 
′ωωρB, (H.50)
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where
′ stands for ∂
(ρ0)/∂ρ0. Some comment is useful in the special case of SDD
couplings. If α or γ is different from zero the effective mass M∗ or the effective
chemical potential μ∗ depend on the scalar density. The scalar density ρs therefore
depends on itself implicitly and Eq. (H.26) becomes a selfconsistent equation, but
unlike the other two selfconsistent equations this one does not follow from the
mesonic equations of motion! Consequently, if ρs is defined once the selfconsistent
equations (H.29) and (H.30) are solved.

With the selfenergies and the densities defined we can finally prove Eq. (H.40)
and the thermodynamic consistency of the model. On the level of the selfenergies
the derivative of the pressure with respect to xε{σ,ω, ρs , ρB} is

∂P

∂x
= −∂U

∂x
+ ∂O
∂x
+ ∂�

0(r)

∂x
ρB +�0(r) ∂ρB

∂x
− ∂�

s(r)

∂x
ρs −�s(r) ∂ρs

∂x
+ ∂P0

∂x

(H.51)

= −∂U
∂x
+ ∂O
∂x
+ ∂�

0(r)

∂x
ρB +�0(r) ∂ρB

∂x
− ∂�

s(r)

∂x
ρs −�s(r) ∂ρs

∂x

+ ∂P0

∂μ∗
∂μ∗

∂x︸ ︷︷ ︸
−ρB∂x(�0)

+ ∂P0

∂M∗
∂M∗

∂x︸ ︷︷ ︸
ρs∂x(�s)

= −∂U
∂x
+ ∂O
∂x
+�0(r) ∂ρB

∂x
−�s(r) ∂ρs

∂x
− ρB ∂�

0(0)

∂x
+ ρs ∂�

s(0)

∂x
.

Here we have used the relations ∂M
∗

∂M
= 1 = ∂μ∗

∂μ
, which holds true since we treat

ρs and ρB as variables, as well as ∂P0
∂μ
= ρB and ∂P0

∂M
= −ρs that correspond to

Eq. (H.25) and (H.26).
For the further evaluation we have to use the exact forms of the selfenergies and

to include the density dependence of the couplings while taking the derivatives:

∂P

∂x
= −∂U

∂σ

∂σ

∂x
+ ∂O
∂ω

∂ω

∂x
+ (−β
′σ σρs + δ
′ωωρB) ∂ρB∂x

− (α
′σ σρs − γ
′ωωρB) ∂ρs∂x
− ρB

(

ω
∂ω

∂x
+ 
′ωω

(
γ
∂ρs

∂x
+ δ ∂ρB

∂x

))

+ ρs
(

σ
∂σ

∂x
+ 
′σ σ

(
α
∂ρs

∂x
+ β ∂ρB

∂x

))

= ∂σ
∂x

(

σρs − ∂U

∂σ

)
+ ∂ω
∂x

(
∂O

∂ω
− 
ωρB

)
. (H.52)
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The derivatives vanish if the selfconsistent equations (H.29) and (H.30)—following
from the mesonic equations of motion (H.7), (H.8)—are fulfilled. This finally proves
Eq. (H.40), thus demonstrating the thermodynamic consistency of the model.

Although the density-dependent relativistic mean-field theory is fully Lorentz-
invariant , thermodynamically consistent and allows for the description of a wide
class of equations of state for nuclear matter, it is essentially an on-shell theory due
to the mass-shell condition (H.19).
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